We propose a simple but effective source-free domain adaptation (SFDA) method. Treating SFDA as an unsupervised clustering problem and following the intuition that local neighbors in feature space should have more similar predictions than other features, we propose to optimize an objective of prediction consistency. This objective encourages local neighborhood features in feature space to have similar predictions while features farther away in feature space have dissimilar predictions, leading to efficient feature clustering and cluster assignment simultaneously. For efficient training, we seek to optimize an upper-bound of the objective resulting in two simple terms. Furthermore, we relate popular existing methods in domain adaptation, source-free domain adaptation and contrastive learning via the perspective of discriminability and diversity. The experimental results prove the superiority of our method, and our method can be adopted as a simple but strong baseline for future research in SFDA. Our method can be also adapted to source-free open-set and partial-set DA which further shows the generalization ability of our method.
翻译:我们建议一种简单而有效的无源域适应(SFDA)方法。 将SFDA视为一个不受监督的集群问题,并直觉地认为地物空间的当地邻居应该有比其他特征更相似的预测,我们建议优化预测一致性的目标。 这个目标鼓励地物空间的当地邻居有类似的预测,而地物空间的特征则有不同的预测,同时导致高效的特征集群和集群任务。 为了进行有效的培训,我们力求优化目标的上限,形成两个简单的术语。 此外,我们还从差异性和多样性的角度将现有在地物适应、无源域适应和对比性学习方面采用流行的方法联系起来。 实验结果证明了我们的方法的优越性,我们的方法可以作为未来在SFDA中研究的简单而有力的基准。 我们的方法也可以适应于无源开放和部分设置的DA,进一步展示我们方法的普及能力。