Existing unsupervised domain adaptation methods based on adversarial learning have achieved good performance in several medical imaging tasks. However, these methods focus only on global distribution adaptation and ignore distribution constraints at the category level, which would lead to sub-optimal adaptation performance. This paper presents an unsupervised domain adaptation framework based on category-level regularization that regularizes the category distribution from three perspectives. Specifically, for inter-domain category regularization, an adaptive prototype alignment module is proposed to align feature prototypes of the same category in the source and target domains. In addition, for intra-domain category regularization, we tailored a regularization technique for the source and target domains, respectively. In the source domain, a prototype-guided discriminative loss is proposed to learn more discriminative feature representations by enforcing intra-class compactness and inter-class separability, and as a complement to traditional supervised loss. In the target domain, an augmented consistency category regularization loss is proposed to force the model to produce consistent predictions for augmented/unaugmented target images, which encourages semantically similar regions to be given the same label. Extensive experiments on two publicly fundus datasets show that the proposed approach significantly outperforms other state-of-the-art comparison algorithms.


翻译:以对抗性学习为基础的现有未经监督的域适应方法在若干医学成像任务中取得了良好的业绩;然而,这些方法仅侧重于全球分布适应,忽视了类别一级的分配限制,从而导致次优适应性业绩;本文件介绍了基于类别一级正规化的未经监督的域适应框架,该框架从三个角度规范了类别分配;具体地说,为跨领域类别正规化,提议了一个适应性原型调整模块,将同一类别在源和目标领域的原型与源和目标领域的常规化统一起来;此外,为内部类别正规化,我们分别为源域和目标域设计了正规化技术;在源域,提议采用原型指导性歧视性损失,通过实施分类内紧凑和分类间分离,并作为对传统受监督损失的补充,学习更具有歧视性的特点表现;在目标领域,提议增加一致性类别正规化损失,以迫使模型对同一类别在源域和目标域内的原型图像作出一致预测,这鼓励在性质上相似的区域获得同一标签。在源域内,提议对两个公开基金式数据比较法作广泛的实验,以显示拟议的其他重大状态外演算法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员