Time-dependent Maxwell's equations govern electromagnetics. Under certain conditions, we can rewrite these equations into a partial differential equation of second order, which in this case is the vectorial wave equation. For the vectorial wave, we investigate the numerical application and the challenges in the implementation. For this purpose, we consider a space-time variational setting, i.e. time is just another spatial dimension. More specifically, we apply integration by parts in time as well as in space, leading to a space-time variational formulation with different trial and test spaces. Conforming discretizations of tensor-product type result in a Galerkin--Petrov finite element method that requires a CFL condition for stability. For this Galerkin--Petrov variational formulation, we study the CFL condition and its sharpness. To overcome the CFL condition, we use a Hilbert-type transformation that leads to a variational formulation with equal trial and test spaces. Conforming space-time discretizations result in a new Galerkin--Bubnov finite element method that is unconditionally stable. In numerical examples, we demonstrate the effectiveness of this Galerkin--Bubnov finite element method. Furthermore, we investigate different projections of the right-hand side and their influence on the convergence rates. This paper is the first step towards a more stable computation and a better understanding of vectorial wave equations in a conforming space-time approach.


翻译:取决于时间的 Maxwell 方程式管理电磁。 在某些条件下, 我们可以重写这些方程式, 将其转换成一个部分差异的第二顺序方程式, 在本案中, 这是矢量波方程式 。 对于矢量波, 我们调查数字应用和执行中的挑战 。 为此, 我们考虑一个时- 时间变异设置, 即时间只是另一个空间层面 。 更具体地说, 我们应用时- 时间和空间的整合, 导致与不同的试验和测试空间形成时- 时间变异配制 。 将慢产品类型分解成一个Galerkin- Petrov 限值元素方法, 从而形成一个需要 CFL 条件来稳定。 对于这个 Galerkin- Petrov 的变异配方程式, 我们研究CFL 条件及其敏锐度。 为了克服 CFLL 条件, 我们使用希尔伯特型变换式转换, 导致与同等试验和测试空间空间的变换配制配制。 将时- Butnov 的分解导致新的 Galerkin- Bruft 元素的新的 Gal 方法, 我们用一个更稳定、 的平平平平平平时- 的平平平平平平平平平的平的平平平平的平的平平的平的平比的平比的平平平平平的平的平平的平的平的平平的平的平的平的平的平的平比的平的平的平的平的平的平的平的平的平比的平的平比。</s>

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
161+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
93+阅读 · 2022年8月2日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
161+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员