Bayesian optimization over the latent spaces of deep autoencoder models (DAEs) has recently emerged as a promising new approach for optimizing challenging black-box functions over structured, discrete, hard-to-enumerate search spaces (e.g., molecules). Here the DAE dramatically simplifies the search space by mapping inputs into a continuous latent space where familiar Bayesian optimization tools can be more readily applied. Despite this simplification, the latent space typically remains high-dimensional. Thus, even with a well-suited latent space, these approaches do not necessarily provide a complete solution, but may rather shift the structured optimization problem to a high-dimensional one. In this paper, we propose LOL-BO, which adapts the notion of trust regions explored in recent work on high-dimensional Bayesian optimization to the structured setting. By reformulating the encoder to function as both an encoder for the DAE globally and as a deep kernel for the surrogate model within a trust region, we better align the notion of local optimization in the latent space with local optimization in the input space. LOL-BO achieves as much as 20 times improvement over state-of-the-art latent space Bayesian optimization methods across six real-world benchmarks, demonstrating that improvement in optimization strategies is as important as developing better DAE models.
翻译:对深自动编码模型(DAEs)潜在空间的Bayesian优化最近出现,这是优化结构化、离散、难以点数的搜索空间(例如分子)的富有挑战性的黑盒功能的有希望的新办法。DAE在这里通过将输入图绘制成熟悉的Bayesian优化工具更便于应用的连续潜在空间,将搜索空间大大简化为连续的潜在空间。尽管如此,潜伏空间一般仍然是高维的。因此,即使有适合的潜藏空间,这些办法并不一定提供完整的解决方案,而是可能将结构化优化问题转移到高维度的黑盒功能。在本文件中,我们提议LOL-BO,它将最近关于高度巴耶西亚优化的工作所探索的信任区域的概念与结构化环境相适应。通过重新配置编码器作为DAE全球的编码器,以及作为信任区域内套接合模型的深核内,我们更好地将潜在空间的本地优化概念与投入空间的本地优化结合起来。LOL-BOS在20年期的不断改进战略中,将最佳的BA-BA战略作为全球发展的重要基础,在20年中展示了BADAF-S-S-BS-S-S-S-S-BA-S-S-S-S-BAS-S-S-S-A-S-S-S-S-S-S-S-S-S-S-S-S-S-A-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-Sirimimprprprprprprimal-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S