项目名称: 具有一般输运系数的可压缩Navier-Stokes型的方程组解的性态分析
项目编号: No.11301439
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 陈卿
作者单位: 厦门理工学院
项目金额: 22万元
中文摘要: 本项目研究一类粘性系数与热传导系数依赖于密度和温度的可压缩Navier-Stokes型方程组的Cauchy问题和初边值问题。具体研究内容包括:输运系数依赖于密度和(或)温度的一维可压缩Navier-Stokes方程组大初值整体解的存在性和唯一性;粘性系数依赖于密度的高维可压缩Navier-Stokes方程组在初值满足小能量条件下整体解的存在性、唯一性和大时间行为;一维Navier-Stokes方程相关模型(如Korteweg模型)在不连续初值或大初值条件下整体解的存在性、唯一性和大时间行为。本项目的研究力争能对可压缩Navier-Stokes型方程组数学理论中同行关心的一些重要问题有所突破。
中文关键词: 可压缩Navier-Stokes型的方程组;输运系数;整体解;大时间行为;
英文摘要: This project is concerned with the Cauchy problem and initial-boundary value problem of the compressible Navier-Stokes type equations with the viscosity and conductivity coefficients depending on the density and the temperature. The problems under consideration are: Global existence and uniqueness of the solutions to the one-dimensional compressible Navier-Stokes equations with the large initial data and transport coefficients depending on the density and/or the temperature; Global existence, uniqueness and large time behavior of the solutions to the multi-dimensional compressible Navier-Stokes equations with the initial data that are of small energy; Global existence, uniqueness and large time behavior of the solutions to the related model of Navier-Stokes equations (such as Korteweg model) with the discontinuous initial data or the large initial data. Our study will strive to resolve some important mathematical problems of the compressible Navier-Stokes type equations that the peers are concerned with.
英文关键词: compressible Navier-Stokes type equations;transport coefficients;global solutions;large time behavior;