Enhancing the diversity of policies is beneficial for robustness, exploration, and transfer in reinforcement learning (RL). In this paper, we aim to seek diverse policies in an under-explored setting, namely RL tasks with structured action spaces with the two properties of composability and local dependencies. The complex action structure, non-uniform reward landscape, and subtle hyperparameter tuning due to the properties of structured actions prevent existing approaches from scaling well. We propose a simple and effective RL method, Diverse Policy Optimization (DPO), to model the policies in structured action space as the energy-based models (EBM) by following the probabilistic RL framework. A recently proposed novel and powerful generative model, GFlowNet, is introduced as the efficient, diverse EBM-based policy sampler. DPO follows a joint optimization framework: the outer layer uses the diverse policies sampled by the GFlowNet to update the EBM-based policies, which supports the GFlowNet training in the inner layer. Experiments on ATSC and Battle benchmarks demonstrate that DPO can efficiently discover surprisingly diverse policies in challenging scenarios and substantially outperform existing state-of-the-art methods.


翻译:加强政策多样性有利于强化学习的稳健性、探索和转让。在本文件中,我们的目标是在探索不足的环境下寻求多样化的政策,即:具有结构化行动空间的、结构化行动空间的任务,具有可调和性和当地依赖性两种特性。复杂的行动结构、非统一的奖励景观和由于结构化行动性质而微妙的超光度调整,使现有方法无法很好地推广。我们建议一种简单有效的RL方法,即多样化政策优化(DPO),以结构化行动空间的政策为模式,遵循概率性RL框架,作为能源基础模型(EBM)。最近提出的新颖而有力的基因化模型,GFlowNet,作为高效、多样化的EBM政策样本。DPO遵循一个联合优化框架:外部层利用GFlowNet抽样的各种政策更新EBM政策,支持内层的GFlowNet培训。关于STAC和战斗基准的实验表明DPO能够有效地发现具有挑战性情景的多样化政策,大大超越现有状态方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
14+阅读 · 2022年10月15日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
Arxiv
13+阅读 · 2019年11月14日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员