This work presents a rigorous mathematical formulation for topology optimization of a macrostructure undergoing ductile failure. The prediction of ductile solid materials which exhibit dominant plastic deformation is an intriguingly challenging task and plays an extremely important role in various engineering applications. Here, we rely on the phase-field approach to fracture which is a widely adopted framework for modeling and computing the fracture failure phenomena in solids. The first objective is to optimize the topology of the structure in order to minimize its mass, while accounting for structural damage. To do so, the topological phase transition function (between solid and void phases) is introduced, thus resulting in an extension of all the governing equations. Our second objective is to additionally enhance the fracture resistance of the structure. Accordingly, two different formulations are proposed. One requires only the residual force vector of the deformation field as a constraint, while in the second formulation, the residual force vector of the deformation and phase-field fracture simultaneously have been imposed. An incremental minimization principles for a class of gradient-type dissipative materials are used to derive the governing equations. Here, the level-set-based topology optimization is employed to seek an optimal layout with smooth and clear boundaries. Sensitivities are derived using the analytical gradient-based adjoint method to update the level-set surface for both formulations. Here, the evolution of the level-set surface is realized by the reaction-diffusion equation to maximize the strain energy of the structure while a certain volume of design domain is prescribed. Several three-dimensional numerical examples are presented to substantiate our algorithmic developments.
翻译:这项工作展示了一种严格的数学公式,用于优化正在下垂衰竭的宏观结构的地形优化; 预测显示主要塑料变形的细软固体材料是一项令人着迷的挑战性任务,在各种工程应用中发挥着极为重要的作用。 在这里,我们依靠的是分阶段断裂法,这是广泛采用的模型和计算固体断裂现象的框架; 第一个目标是优化结构的地形,以尽量减少其质量,同时计算结构损害; 为此,引入了(固态和真空阶段之间)表层阶段过渡功能,从而导致所有治理方程式的扩展。 我们的第二个目标是进一步增强结构的断裂耐力。 因此,我们提出了两种不同的公式。 其中一种只是要求将碎裂变场的残余力矢量作为一种制约, 而第二个目标是同时将变形和阶段断裂的残余力矢量引入。 一种基于梯度-级变异性材料等级的逐步最小化原则被用来得出治理方程式。 在这里, 基于水平定值的平流的平面结构将进一步增强结构的阻力阻力阻力。 两种不同的方程式都采用平流法的平整式平整的平整的平流结构,同时使用一个平整的平流的平流的平流法的平流的平流的平流的平流结构结构的平流结构的平流的平流方法, 将利用一个平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流结构结构的平流结构的平整。</s>