In this paper we propose a high-order numerical scheme for time-dependent mean field games systems. The scheme, which is built by combining Lagrange-Galerkin and semi-Lagrangian techniques, is explicit, conservative, consistent, and stable for large time steps compared with the space steps. We provide a convergence analysis for the exactly integrated Lagrange-Galerkin scheme applied to the Fokker-Planck equation, and we propose an implementable version with inexact integration. Finally, we validate the convergence rate of the high order method proposed by numerical simulations of two Mean Field Games problems.
翻译:在本文中,我们为基于时间的中线野外游戏系统提出了一个高阶数字计划。这个计划是结合Lagrange-Galerkin和半Lagrangian技术建立的,与空间步骤相比,是明确、保守、一致和稳定的,与空间步骤相比,它有很长的时间步骤。我们为适用于Fokker-Planck等式的完全一体化的Lagrange-Galerkin计划提供了趋同分析,我们提出了一个不精确整合的可执行版本。最后,我们验证了两个中性场游戏问题数字模拟提出的高阶方法的趋同率。</s>