This paper introduces a new sparse Bayesian learning (SBL) algorithm that jointly recovers a temporal sequence of edge maps from noisy and under-sampled Fourier data. The new method is cast in a Bayesian framework and uses a prior that simultaneously incorporates intra-image information to promote sparsity in each individual edge map with inter-image information to promote similarities in any unchanged regions. By treating both the edges as well as the similarity between adjacent images as random variables, there is no need to separately form regions of change. Thus we avoid both additional computational cost as well as any information loss resulting from pre-processing the image. Our numerical examples demonstrate that our new method compares favorably with more standard SBL approaches.
翻译:本文介绍了一种新的稀有的巴伊西亚学习算法,该算法从噪音和抽样不足的Fourier数据中共同恢复了边缘地图的时间序列。 新方法被投放到巴伊西亚框架之中, 并使用一种先行方法, 将图像内部信息同时纳入每个单独的边缘图中, 并配有图像间信息, 以促进任何未改变区域的相似性。 通过将边缘和相邻图像之间的相似性作为随机变量处理, 没有必要分别形成变化区域。 因此, 我们既避免额外的计算成本,也避免因预处理图像而造成的信息损失。 我们的数字示例表明, 我们的新方法与更标准的 SBL 方法相比, 比较优于更标准的 SBL 方法 。</s>