This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.


翻译:本文侧重于图形分析的两项基本任务:社区探测和节点代表学习,分别反映全球和当地图表结构。在目前的文献中,这两个任务通常在实际高度关联的情况下独立研究。我们提出了一个称为 vGraph 的概率基因模型,以学习社区成员资格和节点代表合作。具体地说,我们假设每个节点可以作为社区混合体来代表,每个社区被定义为对节点的多名分布。混合系数和社区分布都以节点和社区的低维度表示为参数。我们设计了一种有效的变异推论算法,使邻近节点的社区成员在潜在空间具有相似性。多个现实世界图的实验结果显示, vGraph 在社区探测和节点代表学习中都非常有效,在两个任务中都比许多竞争性基线都好。我们显示, vgraph 的框架非常灵活,并且很容易扩展,以探测等级社区。

14
下载
关闭预览

相关内容

在网络中发现社区(称为社区检测/发现)是网络科学中的一个基本问题,在过去的几十年中引起了很多关注。 近年来,随着对大数据的大量研究,另一个相关但又不同的问题(称为社区搜索)旨在寻找包含查询节点的最有可能的社区,这已引起了学术界和工业界的广泛关注,它是社区检测问题的依赖查询的变体。
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Representation Learning on Network 网络表示学习笔记
全球人工智能
5+阅读 · 2017年9月30日
Arxiv
35+阅读 · 2020年1月2日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
6+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年2月19日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关VIP内容
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Representation Learning on Network 网络表示学习笔记
全球人工智能
5+阅读 · 2017年9月30日
相关论文
Top
微信扫码咨询专知VIP会员