Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.


翻译:现有知识图形嵌入模型主要侧重于模拟关系模式,例如对称/反对称、倒置和构成。然而,许多现有方法都未能模拟在现实世界应用中常见的语义等级结构。为了应对这一挑战,我们提议了一个新的知识图,以模型-或矩阵、高级知识图嵌入(HAKK)为单位,将实体映入极地协调系统。极地协调系统中的同心圆自然反映等级结构这一事实激励着人类。具体地说,辐射坐标旨在模拟不同层次的实体,而较小的射线实体预计将处于较高级别;为了应对这一挑战,我们提议了一个新颖的知识图,以模型-即高级知识图嵌入(HAKAK)为单位,将实体映入极地协调系统。极协调系统中的同心圆可以自然地反映等级。具体地说,辐射坐标协调旨在模拟处于不同层次的实体,而较小的射线实体预计将处于较高级别;为了应对这一挑战,三角协调的目的是区分同一等级的实体,这些实体预计将拥有大致相同但不同角度的视角嵌入极协调。在极协调系统中,实验性地显示HAAG的模型的模型和测图外的现有数据。

18
下载
关闭预览

相关内容

17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
167+阅读 · 2020年2月13日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
「知识表示学习」专题论文推荐 | 每周论文清单
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
9+阅读 · 2018年10月18日
VIP会员
相关VIP内容
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
167+阅读 · 2020年2月13日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
「知识表示学习」专题论文推荐 | 每周论文清单
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员