The performance of a machine learning model degrades when it is applied to data from a similar but different domain than the data it has initially been trained on. The goal of domain adaptation (DA) is to mitigate this domain shift problem by searching for an optimal feature transformation to learn a domain-invariant representation. Such a domain shift can appear in handwriting recognition (HWR) applications where the motion pattern of the hand and with that the motion pattern of the pen is different for writing on paper and on tablet. This becomes visible in the sensor data for online handwriting (OnHW) from pens with integrated inertial measurement units. This paper proposes a supervised DA approach to enhance learning for OnHW recognition between tablet and paper data. Our method exploits loss functions such as maximum mean discrepancy and correlation alignment to learn a domain-invariant feature representation (i.e., similar covariances between tablet and paper features). We use a triplet loss that takes negative samples of the auxiliary domain (i.e., paper samples) to increase the amount of samples of the tablet dataset. We conduct an evaluation on novel sequence-based OnHW datasets (i.e., words) and show an improvement on the paper domain with an early fusion strategy by using pairwise learning.


翻译:机器学习模型的性能在应用到与其最初培训的数据相类似但不同的领域的数据时会退化。 域适应( DA) 的目标是通过寻找最佳特征转换以学习域变量代表来缓解域变化问题。 这种域变化可以在笔迹识别应用中出现, 手动的动作模式和笔的动作模式在纸面和平板上写作时不同。 这在带有综合惯性测量单位的笔笔笔( ONHW) 的在线笔迹( ONHW) 的传感器数据中可见。 本文提出由DA监督的办法来加强OnHW对平板和纸面数据识别的学习。 我们的方法利用损失函数, 如最大平均差异和相关性对等, 学习域- 变量代表( 即平板和纸面特征之间的相似变量) 。 我们使用三重损失, 从辅助域( 即纸质样本) 中取负样品( ) 来增加平板数据集的样本数量。 我们用新式的 OnW 顺序和早期学习策略( 显示纸质的改进) 进行新顺序评估 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员