A long-standing topic in artificial intelligence is the effective recognition of patterns from noisy images. In this regard, the recent data-driven paradigm considers 1) improving the representation robustness by adding noisy samples in training phase (i.e., data augmentation) or 2) pre-processing the noisy image by learning to solve the inverse problem (i.e., image denoising). However, such methods generally exhibit inefficient process and unstable result, limiting their practical applications. In this paper, we explore a non-learning paradigm that aims to derive robust representation directly from noisy images, without the denoising as pre-processing. Here, the noise-robust representation is designed as Fractional-order Moments in Radon space (FMR), with also beneficial properties of orthogonality and rotation invariance. Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases, and the introduced fractional-order parameter offers time-frequency analysis capability that is not available in classical methods. Formally, both implicit and explicit paths for constructing the FMR are discussed in detail. Extensive simulation experiments and an image security application are provided to demonstrate the uniqueness and usefulness of our FMR, especially for noise robustness, rotation invariance, and time-frequency discriminability.
翻译:人工智能中长期存在的一个主题是有效承认来自噪音图像的模式。在这方面,最近的数据驱动范式认为1)通过在培训阶段(即数据增强)或培训阶段(即数据增强)或培训阶段(即2)添加噪音样本,提高代表的稳健性,通过学习解决反向问题(即图像剥离)来预先处理噪音图像。然而,这些方法一般都显示出效率低下的过程和不稳定的结果,限制了其实际应用。在本文件中,我们探索了一种非学习范式,目的是直接从噪音图像中获取强有力的代表,而没有作为预处理的去音。在这里,噪音-机器人代表制是设计成的,在拉登空间(拉登空间)的分流运动运动运动运动运动,也具有有利的性能性能和变换性。与早先的整型秩序方法不同,我们的工作是一种更通用的设计,采用典型的方法,例如特殊的情况,而引入的分序参数提供了经典方法所不具备的时频分析能力。形式上,详细讨论了建造远方位模型的隐含和明确路径。广泛模拟实验和图像安全性机动性应用,特别展示了我们稳定的频率。