Learning from noisy data is a challenging task that significantly degenerates the model performance. In this paper, we present TCL, a novel twin contrastive learning model to learn robust representations and handle noisy labels for classification. Specifically, we construct a Gaussian mixture model (GMM) over the representations by injecting the supervised model predictions into GMM to link label-free latent variables in GMM with label-noisy annotations. Then, TCL detects the examples with wrong labels as the out-of-distribution examples by another two-component GMM, taking into account the data distribution. We further propose a cross-supervision with an entropy regularization loss that bootstraps the true targets from model predictions to handle the noisy labels. As a result, TCL can learn discriminative representations aligned with estimated labels through mixup and contrastive learning. Extensive experimental results on several standard benchmarks and real-world datasets demonstrate the superior performance of TCL. In particular, TCL achieves 7.5\% improvements on CIFAR-10 with 90\% noisy label -- an extremely noisy scenario. The source code is available at \url{https://github.com/Hzzone/TCL}.


翻译:从吵闹的数据中学习是一项艰巨的任务,它使模型性能大为恶化。在本文中,我们展示了TCL,这是一个全新的双对比学习模式,以学习强健的演示和处理吵闹的标签。具体地说,我们通过将受监督的模型预测输入GMM,将GMM中无标签的潜伏变量与标签性说明联系起来,从而在演示中建立一个高斯混合物模型模型(GMMM),将GMM的无标签潜在变量与标签性爱说明联系起来。然后,TCLL通过另外两个组成部分的GMM,将错误的标签作为分配之外的例子,通过另外两个组成部分的GMMM,检测出一些错误的例子。我们进一步提议了一种带有螺旋式正规化损失的交叉监督功能,从模型预测中套出真正的目标,以便处理吵闹闹的标签。因此,TCLLL能够通过混合和对比性学习来学习与估计的标签相一致的歧视性表述。关于若干标准基准和现实世界数据集的广泛实验结果显示了TCL的优异性表现。特别是,TLLLLLLLS在CIFAR-10上实现了7.5+90的改进了CFAR-10,一个噪音标签 -- -- -- 一种极为吵闹乱的情景。源代码可以在\/HZ.Hzz_/H.HTTTT.</s>

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年4月12日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
13+阅读 · 2019年1月26日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员