项目名称: 相场方程的弱超内罚间断Galerkin方法及其自适应算法
项目编号: No.11526097
项目类型: 专项基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 曾玉平
作者单位: 嘉应学院
项目金额: 3万元
中文摘要: 相场方程在流体力学、材料科学、图像处理、生物力学等领域有着广泛应用。相场方程的两类重要模型问题是Allen-Cahn和Cahn-Hilliard方程。本课题拟研究求解Allen-Cahn和Cahn-Hilliard方程的一类弱超内罚间断Galerkin方法。与标准的内罚间断Galerkin方法相比,该方法更加容易实现,具有较少的计算复杂性,并且具有并行性的本质。项目首先研究先验误差,得到的估计只与摄动因子倒数的低阶多项式相关。为了有效减小计算量,项目将进一步研究弱超内罚间断Galerkin方法的后验误差,理论上证明后验误差估计子的上界和下界,并根据后验误差估计子设计自适应有限元方法进行数值模拟。
中文关键词: 相场方程;间断Galerkin方法;先验和后验误差估计;弱Galerkin方法;变分不等式
英文摘要: Phase field equations are widely used in many areas, such as fluid dynamics, materials sciences, image processing and biomechanics. Allen-Cahn and Cahn-Hilliard equations are two important phase field modles. The main objective of this project is to study a weakly over-penalized interior penalty discontinuous Galerkin method for solving Allen-Cahn and Cahn-Hilliard equations. Compared with many well-known discontinuous Galerkin methods, the weakly over-penalized method is easy to implement and has less computational complexity. In addition, it has high intrinsic parallelism. First, we will obtain the a priori error estimates, which depend on the reciprocal of the perturbation parameter only in some lower polynomial order. Furthermore, in order to reduce the amount of calculation, we will study the a posteriori error estimates, and prove the upper and lower bounds of the error estimators. Finally, we shall design adaptive finite element methods according to the a posteriori error estimator to carry out numerical simulation.
英文关键词: phase field equation;discontinuous Galerkin method;a priori and a posteriori error estimates;weak Galerkin method;variational inequality