Self-supervised blind denoising for Poisson-Gaussian noise remains a challenging task. Pseudo-supervised pairs constructed from single noisy images re-corrupt the signal and degrade the performance. The visible blindspots solve the information loss in masked inputs. However, without explicitly noise sensing, mean square error as an objective function cannot adjust denoising intensities for dynamic noise levels, leading to noticeable residual noise. In this paper, we propose Blind2Sound, a simple yet effective approach to overcome residual noise in denoised images. The proposed adaptive re-visible loss senses noise levels and performs personalized denoising without noise residues while retaining the signal lossless. The theoretical analysis of intermediate medium gradients guarantees stable training, while the Cramer Gaussian loss acts as a regularization to facilitate the accurate perception of noise levels and improve the performance of the denoiser. Experiments on synthetic and real-world datasets show the superior performance of our method, especially for single-channel images.
翻译:对于Poisson-Gausian噪音而言,自我监督的盲点破除仍是一项艰巨的任务。 由单张噪音图像重建信号并降低性能而建造的双双双双双双双双双双耳友友友友所监督的双眼双眼双眼双眼将信号重新粉碎并降低性能。 可见的盲点在隐蔽投入中解决了信息损失问题。 然而,在没有明确的噪音感应的情况下,作为客观功能的中方差是无法调整动态噪音水平的去除性强度,从而导致明显的残余噪音。 在本文中,我们提议了“ 盲点2声”, 这是一种简单而有效的方法, 以克服被清除的图像中的残余噪音。 拟议的适应性再可见感应感应的噪音水平, 并在保持信号的残留的同时进行个化除尘。 对中间中等梯度的理论分析保证了稳定的训练, 而Cramer Gaussian损失作为一种正规化作用, 以促进对噪音水平的准确认识并改进除尘器的性。 在合成和现实世界的数据集上进行的实验显示了我们方法的优异性表现, 。</s>