Building on the well-known total-variation (TV), this paper develops a general regularization technique based on nonlinear isotropic diffusion (NID) for inverse problems with piecewise smooth solutions. The novelty of our approach is to be adaptive (we speak of A-NID) i.e. the regularization varies during the iterates in order to incorporate prior information on the edges, deal with the evolution of the reconstruction and circumvent the limitations due to the non-convexity of the proposed functionals. After a detailed analysis of the convergence and well-posedness of the method, this latter is validated by simulations perfomed on computerized tomography (CT).


翻译:本文件以众所周知的全变法(TV)为基础,发展了一种基于非线性同位素扩散(NID)的一般正规化技术,以对付以平滑方式解决问题的反面问题,我们方法的新颖之处是适应性(我们称之为A-NID),即在迭代期间的正规化各有不同,以便纳入关于边缘的事先信息,处理重建的演变情况,并避免由于拟议功能不协调而造成的限制。在详细分析该方法的趋同性和稳妥性之后,后一种方法得到计算机化成像学模拟的验证。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员