We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.
翻译:我们开发了一种风险最小化和随机优化的方法,为差异提供一个平衡的替代方,允许近似和计算效率高的近似交易和估计误差之间的交易。我们的方法建立在分配稳健优化技术和欧文经验可能性的基础之上,我们提供若干限定抽样和无症状的结果,这些结果体现了估算器的理论性能。特别是,我们表明,我们的程序具有最佳性能证书,在某些情况下,通过自动平衡偏差和差异,比实证风险最小化的速度要快,比经验性风险最小化的速度要快。我们提供了确凿的经验证据,表明在实践中,估计者确实在培训样本上将差异与绝对绩效进行交易,为一些分类问题改进了标准经验风险最小化(测试)的外部业绩,而不是标准经验风险最小化。