We investigate a family of bilevel imaging learning problems where the lower-level instance corresponds to a convex variational model involving first- and second-order nonsmooth regularizers. By using geometric properties of the primal-dual reformulation of the lower-level problem and introducing suitable changes of variables, we are able to reformulate the original bilevel problems as Mathematical Programs with Complementarity Constraints (MPCC). For the latter, we prove tight constraint qualification conditions (MPCC-MFCQ and partial MPCC-LICQ) and derive Mordukovich (M-) and Strong (S-) stationarity conditions. The S-stationarity system for the MPCC turns also into S-stationarity conditions for the original formulation. Second-order sufficient optimality conditions are derived as well. The proposed reformulation may be extended to problems in function spaces, leading to MPCC's with additional constraints on the gradient of the state. Finally, we report on some numerical results obtained by using the proposed MPCC reformulations together with available large-scale nonlinear programming solvers.
翻译:我们调查的是双层成像学习问题,低层次实例与涉及一等和二等非制成的一等和二等非制式规范者的细形变异模型相对应。我们通过使用对低层次问题进行初步双重重整的几何特性和引入适当的变量变化,能够将最初的双层问题重新表述为具有互补性制约的数学方案(MPCC)。对于后者,我们证明存在严格的限制条件(MPCC-MCCQ和部分MPCC-LICQ),并得出Mordukovich(M-)和强势(S-)的固定性条件。对MPCC的静态系统也变成最初的制成的静态条件。还得出了第二层的充分最佳性条件。拟议的重整可能扩大到功能空间的问题,导致MPCC对州梯度的额外限制。最后,我们报告通过使用拟议的MPCC重整以及现有的大型非线性编程解决方案解决者获得的一些数字结果。