This paper presents a new Expectation Propagation (EP) framework for image restoration using patch-based prior distributions. While Monte Carlo techniques are classically used to sample from intractable posterior distributions, they can suffer from scalability issues in high-dimensional inference problems such as image restoration. To address this issue, EP is used here to approximate the posterior distributions using products of multivariate Gaussian densities. Moreover, imposing structural constraints on the covariance matrices of these densities allows for greater scalability and distributed computation. While the method is naturally suited to handle additive Gaussian observation noise, it can also be extended to non-Gaussian noise. Experiments conducted for denoising, inpainting and deconvolution problems with Gaussian and Poisson noise illustrate the potential benefits of such flexible approximate Bayesian method for uncertainty quantification in imaging problems, at a reduced computational cost compared to sampling techniques.
翻译:本文介绍了利用以前基于补丁的分布法进行图像恢复的新的期望推进(EP)框架。 虽然蒙特卡洛技术传统上用于对棘手的后部分布物进行取样,但是在图像恢复等高维推论问题中,它们可能会受到可缩放问题的影响。为了解决这一问题,这里使用EP来利用多种变异高斯密度产品来估计后部分布。此外,对这些密度的共变基质施加结构性限制,可以提高可缩放性和分布计算。虽然这种方法自然适合于处理高斯氏添加剂观测噪音,但也可以推广到非高加索噪音。为与高斯和普瓦森噪音进行分解、油漆和分解问题而进行的实验表明,与抽样技术相比,这种近似贝斯方法在成像问题中进行不确定性量化的灵活方法可能带来的益处,其计算成本比抽样技术要低。