Many meta-learning approaches for few-shot learning rely on simple base learners such as nearest-neighbor classifiers. However, even in the few-shot regime, discriminatively trained linear predictors can offer better generalization. We propose to use these predictors as base learners to learn representations for few-shot learning and show they offer better tradeoffs between feature size and performance across a range of few-shot recognition benchmarks. Our objective is to learn feature embeddings that generalize well under a linear classification rule for novel categories. To efficiently solve the objective, we exploit two properties of linear classifiers: implicit differentiation of the optimality conditions of the convex problem and the dual formulation of the optimization problem. This allows us to use high-dimensional embeddings with improved generalization at a modest increase in computational overhead. Our approach, named MetaOptNet, achieves state-of-the-art performance on miniImageNet, tieredImageNet, CIFAR-FS, and FC100 few-shot learning benchmarks. Our code is available at https://github.com/kjunelee/MetaOptNet.
翻译:少见的学习的许多元学习方法依赖于简单的基础学习者,例如近邻分类者。然而,即使在少见的体系中,经过歧视性训练的线性预测器也可以提供更好的概括性。我们提议利用这些预测器作为基础学习者,为少见的学习学习学习进行演示,并表明它们为特征大小和成绩之间在一系列微小的识别基准方面提供了更好的权衡。我们的目标是学习在新类别线性分类规则下非常概括化的特征嵌入。为了有效解决这一问题,我们利用线性分类者的两个特性:对同流问题的最佳性条件的隐含差别和优化问题的双重配方。这使我们能够使用高维嵌入,在计算间接费用略微增加时加以改进。我们称为MetaOptNet的方法在微图像网、分级ImageNet、CIFAR-FS和FC 100几发式学习基准上取得了最先进的表现。我们的代码可在https://github.com/kjunele/MetaOptNet上查到。