Physical systems obey strict symmetry principles. We expect that machine learning methods that intrinsically respect these symmetries should have higher prediction accuracy and better generalization in prediction of physical dynamics. In this work we implement a principled model based on invariant scalars, and release open-source code. We apply this Scalars method to a simple chaotic dynamical system, the springy double pendulum. We show that the Scalars method outperforms state-of-the-art approaches for learning the properties of physical systems with symmetries, both in terms of accuracy and speed. Because the method incorporates the fundamental symmetries, we expect it to generalize to different settings, such as changes in the force laws in the system.
翻译:物理系统遵守严格的对称原则。 我们期望在本质上尊重这些对称的机器学习方法在预测物理动态时应该具有更高的预测准确性和更好的概括性。 在这项工作中,我们实施了基于不定的天体弧和发布开源代码的原则模型。 我们将这种Scalars方法应用于一个简单的混乱动态系统,即弹簧双曲。 我们显示Scalars方法在准确性和速度上都优于最先进的方法,以学习具有对称性的物理系统特性。 由于该方法包含基本的对称性,我们期望它能够概括到不同的环境,例如系统的力量法的变化。