Unsupervised domain adaptation is useful in medical image segmentation. Particularly, when ground truths of the target images are not available, domain adaptation can train a target-specific model by utilizing the existing labeled images from other modalities. Most of the reported works mapped images of both the source and target domains into a common latent feature space, and then reduced their discrepancy either implicitly with adversarial training or explicitly by directly minimizing a discrepancy metric. In this work, we propose a new framework, where the latent features of both domains are driven towards a common and parameterized variational form, whose conditional distribution given the image is Gaussian. This is achieved by two networks based on variational auto-encoders (VAEs) and a regularization for this variational approximation. Both of the VAEs, each for one domain, contain a segmentation module, where the source segmentation is trained in a supervised manner, while the target one is trained unsupervisedly. We validated the proposed domain adaptation method using two cardiac segmentation tasks, i.e., the cross-modality (CT and MR) whole heart segmentation and the cross-sequence cardiac MR segmentation. Results show that the proposed method achieved better accuracies compared to two state-of-the-art approaches and demonstrated good potential for cardiac segmentation. Furthermore, the proposed explicit regularization was shown to be effective and efficient in narrowing down the distribution gap between domains, which is useful for unsupervised domain adaptation. Our code and data has been released via https://zmiclab.github.io/projects.html.


翻译:特别是,当目标图像的地面真实性无法提供时,区域适应性可以通过使用其他模式的现有标签图像来培训一个特定目标模型。所报告的大多数作品将源域和目标域的图像映射成一个共同的潜在特征空间,然后通过对抗性培训或直接尽量减少差异度度度来缩小差异。在这项工作中,我们提出了一个新框架,将这两个域的潜在特征驱动为共同和参数化的变异形式,根据图像进行有条件的分布为高斯。这是由两个基于变异性域间自动摄像头(VAEs)的网络和这种变异性近似规范化实现的。大多数所报告的作品将源域和目标域的图像映射成一个共同的潜在特征空间,然后通过对抗性培训或直接尽量减少差异度度度度度度度来缩小差异。在这项工作中,我们用两种有用的心力分化任务,即跨模式(CT和MRM)整个心脏偏差的分布,以及跨层域间结构的配置方法都展示了我们之间实现的更精确度分流法。结果显示,为了更精确的分化,在两个方向分解中,拟议中,跨性分解法显示的是,为更精确分解法显示了我们为更精确分解的分流法。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Deep Co-Training for Semi-Supervised Image Segmentation
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Top
微信扫码咨询专知VIP会员