题目

跨语言表示学习,Unsupervised Cross-lingual Representation Learning at Scale

关键词

自然语言处理,表示学习,跨语言,人工智能

简介

本文表明,针对多种跨语言转换任务,大规模地对多语言语言模型进行预训练可以显着提高性能。 我们使用超过2 TB的经过过滤的CommonCrawl数据在一百种语言上训练了基于Transformer的屏蔽语言模型。 我们的模型称为XLM-R,在各种跨语言基准测试中,其性能明显优于多语言BERT(mBERT),包括XNLI的平均精度为+ 13.8%,MLQA的平均F1得分为+ 12.3%,NER的平均F1得分为+ 2.1%。 XLM-R在低资源语言上表现特别出色,与以前的XLM模型相比,斯瓦希里语的XNLI准确性提高了11.8%,乌尔都语的准确性提高了9.2%。 我们还对获得这些收益所需的关键因素进行了详细的实证评估,包括(1)积极转移和能力稀释以及(2)大规模资源资源的高低性能之间的权衡。 最后,我们首次展示了在不牺牲每种语言性能的情况下进行多语言建模的可能性。 XLM-R在GLUE和XNLI基准测试中具有强大的单语言模型,因此非常具有竞争力。 我们将公开提供XLM-R代码,数据和模型。

作者

Alexis Conneau, Kartikay Khandelwal等。

成为VIP会员查看完整内容
27

相关内容

自然语言处理(NLP)是语言学,计算机科学,信息工程和人工智能的一个子领域,与计算机和人类(自然)语言之间的相互作用有关,尤其是如何对计算机进行编程以处理和分析大量自然语言数据 。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
【ACL2020-Facebook AI】大规模无监督跨语言表示学习
专知会员服务
34+阅读 · 2020年4月5日
单语言表征如何迁移到多语言去?
AI科技评论
5+阅读 · 2019年11月21日
多项NLP任务新SOTA,Facebook提出预训练模型BART
机器之心
22+阅读 · 2019年11月4日
GLUE排行榜上全面超越BERT的模型近日公布了!
机器之心
9+阅读 · 2019年2月13日
跨语言版BERT:Facebook提出跨语言预训练模型XLM
机器之心
4+阅读 · 2019年2月6日
Facebook开源增强版LASER库,包含93种语言工具包
机器之心
5+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
3+阅读 · 2018年8月27日
Large-Scale Study of Curiosity-Driven Learning
Arxiv
8+阅读 · 2018年8月13日
Arxiv
5+阅读 · 2018年6月4日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关VIP内容
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
【ACL2020-Facebook AI】大规模无监督跨语言表示学习
专知会员服务
34+阅读 · 2020年4月5日
相关资讯
微信扫码咨询专知VIP会员