Despite recent success, deep learning-based methods for predicting 3D garment deformation under body motion suffer from interpenetration problems between the garment and the body. To address this problem, we propose a novel collision handling neural network layer called Repulsive Force Unit (ReFU). Based on the signed distance function (SDF) of the underlying body and the current garment vertex positions, ReFU predicts the per-vertex offsets that push any interpenetrating vertex to a collision-free configuration while preserving the fine geometric details. We show that ReFU is differentiable with trainable parameters and can be integrated into different network backbones that predict 3D garment deformations. Our experiments show that ReFU significantly reduces the number of collisions between the body and the garment and better preserves geometric details compared to prior methods based on collision loss or post-processing optimization.
翻译:尽管最近取得了成功,但根据深度学习法预测3D外衣在身体运动下变形的方法也因服装与身体之间的穿透问题而受到影响。为了解决这个问题,我们提议采用新型碰撞处理神经网络层,称为反向反应力单元(ReFU )。根据底体的连接距离功能和目前的服装顶部位置,ReFU预测了将任何相互穿透的脊椎推向无碰撞配置的每面顶部部分,同时保留了细微几何细节。我们表明ReFU与可训练参数不同,可以与预测3D服装变形的不同网络主干网连接。我们的实验显示,ReFU大大降低了身体与服装的碰撞次数,并且比以前基于碰撞丢失或后处理优化的方法更好地保存几何细节。