Systems biology and systems neurophysiology in particular have recently emerged as powerful tools for a number of key applications in the biomedical sciences. Nevertheless, such models are often based on complex combinations of multiscale (and possibly multiphysics) strategies that require ad hoc computational strategies and pose extremely high computational demands. Recent developments in the field of deep neural networks have demonstrated the possibility of formulating nonlinear, universal approximators to estimate solutions to highly nonlinear and complex problems with significant speed and accuracy advantages in comparison with traditional models. After synthetic data validation, we use so-called physically constrained neural networks (PINN) to simultaneously solve the biologically plausible Hodgkin-Huxley model and infer its parameters and hidden time-courses from real data under both variable and constant current stimulation, demonstrating extremely low variability across spikes and faithful signal reconstruction. The parameter ranges we obtain are also compatible with prior knowledge. We demonstrate that detailed biological knowledge can be provided to a neural network, making it able to fit complex dynamics over both simulated and real data.
翻译:特别是系统生物学和系统神经生理学最近已成为生物医学若干关键应用的有力工具,然而,这些模型往往基于多种规模(可能包括多物理学)战略的复杂组合,这些战略需要特别的计算战略,并提出了极高的计算要求。深神经网络领域的最近发展表明,有可能制定非线性通用近似器来估计高度非线性和复杂问题的解决办法,与传统模型相比,其速度和准确性都有很大优势。在合成数据验证后,我们使用所谓的身体受限神经网络(PINN)来同时解决生物上可信的Hodgkin-Huxley模型,并从可变现和恒定的刺激下的实际数据中推断出其参数和隐藏的时道,表明在峰值和忠实信号重建方面差异性极小。我们获得的参数范围也与先前的知识相容。我们证明,详细的生物知识可以提供给神经网络,使其在模拟数据和实际数据上都具有适当的复杂动态。