We study the dynamic behaviors of heterogeneous individuals observed in a network.The heterogeneous dynamic patterns are characterized by a network vector autoregression model with a latent group structure, where group-wise network effects and time-invariant fixed-effects can be incorporated. A least-squares type objective function is proposed for simultaneous model estimation and group membership identification, and a computationally efficient algorithm is developed for the resulting non-convex optimization problem. Theoretical properties of the estimators are investigated, which allows the number of groups $G$ to be over-specified to achieve estimation consistency but requires a correctly specified $G$ for asymptotic normality. A data-driven selection criterion for $G$ is proposed and is shown to be consistent for identifying the true $G$. The effectiveness of the proposed model is demonstrated through extensive simulation studies as well as a real data example from Sina Weibo.
翻译:我们研究了在网络中观测到的不同个体的动态行为。多元动态模式的特征是具有潜在组结构的网络矢量自动递减模型,可以集成成成群网络效应和时间变化固定效应。提议了一个最小方型客观功能,用于同时进行模型估计和群体成员身份识别,并针对由此产生的非电流优化问题制定了一种计算效率的算法。对测算器的理论特性进行了调查,从而使得定值过高的组数$G美元能够实现估算一致性,但需要准确指定的零星特性$G美元。提出了以$G$为单位的数据驱动选择标准,并证明在确定真正的$G$方面是一致的。通过广泛的模拟研究以及Sina Weibo的一个真实数据实例,证明了拟议模型的有效性。