【导读】机器学习顶会 NeurIPS 2020, 是人工智能领域全球最具影响力的学术会议之一,因此在该会议上发表论文的研究者也会备受关注。据官方统计,今年NeurIPS 2020 共收到论文投稿 9454 篇,接收 1900 篇(其中 oral 论文 105 篇、spotlight 论文 280 篇),论文接收率为 20.1%。近期,所有Paper List 放出,图机器学习(Graph machine learning)依然十分火热,澳大利亚莫纳什大学潘世瑞(Shirui Pan)老师和其学生(Yixin Liu)整理出NeurIPS 2020图机器学习相关的总结论文《Graph Machine Learning: NeurIPS 2020 Papers》,其中显示大概有80多篇图网络相关论文被大会接收,主要包括:图神经网络(GNNS)的改进、对抗攻击与防御、图自监督学习、可扩展图学习、时空/动态图、图上的应用等方向。

NeurIPS 2020 Accepted Papers : https://neurips.cc/Conferences/2020/AcceptedPapersInitial

潘世瑞(Shirui Pan) 老师主页: https://shiruipan.github.io/ https://shiruipan.github.io/post/NIPS_2020_GML.pdf

图神经网络的改进【30篇】 (IMPROVEMENT OF GRAPH NEURAL NETWORKS (GNNS) )

1.克服过平滑(Overcoming Over-smoothness) 【3篇】

Scattering GCN: Overcoming Oversmoothness in Graph Convolutional Networks

Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks

Towards Deeper Graph Neural Networks with Differentiable Group Normalization

2. 图池化(Graph Pooling)【4篇】

Graph Cross Networks with Vertex Infomax Pooling

Rethinking pooling in graph neural networks

DiffGCN: Graph Convolutional Networks via Differential Operators and Algebraic Multi-grid Pooling

Path Integral Based Convolution and Pooling for Graph Neural Networks

3.图结构学习(Graph Structure Learning)【2篇】

Iterative Deep Graph Learning for Graph Neural Networks: Better and Robust Node Embeddings

Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings

丨tips:以上两篇论文都与图攻击/健壮性有关

4. 对GCN的解释(Explainers for GNNs)【2篇】

Parameterized Explainer for Graph Neural Network

PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks

5. 其他(Others )【19篇】

Factorizable Graph Convolutional Networks

Factor Graph Neural Networks

Building powerful and equivariant graph neural networks with message-passing

Graphon Neural Networks and the Transferability of Graph Neural Networks

Principal Neighbourhood Aggregation for Graph Nets

Implicit Graph Neural Networks

Natural Graph Networks

Unsupervised Joint k-node Graph Representations with Compositional Energy-Based Models

Can Graph Neural Networks Count Substructures?

How hard is to distinguish graphs with graph neural networks?

Graph Random Neural Networks for Semi-Supervised Learning on Graphs

Graph Stochastic Neural Networks for Semi-supervised Learning

Random Walk Graph Neural Networks

Dirichlet Graph Variational Autoencoder

Convergence and Stability of Graph Convolutional Networks on Large Random Graphs

Design Space for Graph Neural Networks

Graph Geometry Interaction Learning

Attribution for Graph Neural Networks

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

对抗性攻击与防御【5篇】

(ADVERSARIAL ATTACK & DEFENSE )

Adversarial Attack on Graph Neural Networks with Limited Node Access

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks

Certified Robustness of Graph Convolution Networks for Graph Classification under Topological Attacks

Adversarial Attacks on Deep Graph Matching

Reliable Graph Neural Networks via Robust Location Estimation

图自监督学习【3篇】

(GRAPH SELF-SUPERVISED LEARNING)

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs

GROVER: Self-Supervised Message Passing Transformer on Large-scale Molecular Graphs

Pre-Training Graph Neural Networks: A Contrastive Learning Framework with Augmentations

可扩展图学习【3篇】

(SCALABLE GRAPH LEARNING)

Bandit Samplers for Training Graph Neural Networks

GCOMB: Learning Budget-constrained Combinatorial Algorithms over Billion-sized Graphs

Scalable Graph Neural Networks via Bidirectional Propagation

时空/动态/流图【4篇】

(SPATIAL-TEMPORAL / DYNAMIC / STREAMING GRAPH)

Pointer Graph Networks

Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting

Adaptive Shrinkage Estimation for Streaming Graphs

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting

GNNs的应用【15篇】

(APPLICATION OF GNNS)

1. GNNs ×图相关任务(GNNs × Graph-related Tasks)【3篇】

Graduated Assignment for Joint Multi-Graph Matching and Clustering with Application to Unsupervised Graph Matching Network Learning

On the equivalence of molecular graph convolution and molecular wave function with poor basis set

Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous GNNs

2. GNNs × 计算机视觉(GNNs × CV) 【3篇】

Learning Physical Graph Representations from Visual Scenes

Multimodal Graph Networks for Compositional Generalization in Visual Question Answering

GPS-Net: Graph-based Photometric Stereo Network

3. GNNs × 自然语言处理(GNNs × NLP)【4篇】

Learning Graph Structure with A Finite-State Automaton Layer

Strongly Incremental Constituency Parsing with Graph Neural Networks

Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks

Deep Relational Topic Modeling via Graph Poisson Gamma Belief Network

4. GNNs ×强化学习(GNNs × RL)【3篇】

Reward Propagation Using Graph Convolutional Networks

Graph Policy Network for Transferable Active Learning on Graphs

Can Q-Learning with Graph Networks Learn a Generalizable Branching Heuristic for a SAT Solver?

5. GNNs ×其他(GNNs × Others)【2篇】

Generative 3D Part Assembly via Dynamic Graph Learning

Multipole Graph Neural Operator for Parametric Partial Differential Equations

其他【25篇】

(OTHERS)

  1. 图嵌入(Graph Embedding )【4篇】

Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings

Curvature Regularization to Prevent Distortion in Graph Embedding

Handling Missing Data with Graph Representation Learning

Manifold structure in graph embeddings

  1. 知识图谱(Knowledge Graph )【3篇】

Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs

Searching Recurrent Architecture for Path-based Knowledge Graph Embedding

Duality-Induced Regularizer for Tensor Factorization Based Knowledge Graph Completion

  1. 图基准数据集(Graph Benchmark)【1篇】

Open Graph Benchmark: Datasets for Machine Learning on Graphs

  1. 图元学习(Graph Meta Learning)【2篇】

Node Classification on Graphs with Few-Shot Novel Labels via Meta Transformed Network Embedding

Graph Meta Learning via Local Subgraphs

  1. 社区发现(Community Detection )【2篇】

Provable Overlapping Community Detection in Weighted Graphs

Community detection in sparse time-evolving graphs with a dynamical Bethe-Hessian

  1. 图聚类(Graph Clustering)【2篇】

On the Power of Louvain for Graph Clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

  1. 谱聚类(Spectral Clustering)【1篇】

Higher-Order Spectral Clustering of Directed Graphs

  1. 链接预测(Link prediction)【1篇】

Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Prediction

  1. 其他(Others indistinguishable)【9篇】

Graph Information Bottleneck

Binary Matrix Completion with Hierarchical Graph Side Information

Universal Function Approximation on Graphs

Less is More: A Deep Graph Metric Learning Perspective Using Few Proxies

COPT: Coordinated Optimal Transport on Graphs

A graph similarity for deep learning

Set2Graph: Learning Graphs From Sets

Stochastic Deep Gaussian Processes over Graphs

Uncertainty Aware Semi-Supervised Learning on Graph Data

以上来自:

https://shiruipan.github.io/post/NIPS_2020_GML.pdf

成为VIP会员查看完整内容
52

相关内容

图机器学习(Machine Learning on Graphs)是一项重要且普遍存在的任务,其应用范围从药物设计到社交网络中的友情推荐。这个领域的主要挑战是找到一种表示或编码图结构的方法,以便机器学习模型能够轻松地利用它。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
41+阅读 · 2020年12月1日
近期必读的六篇 NeurIPS 2020【因果推理】相关论文和代码
专知会员服务
71+阅读 · 2020年10月31日
近期必读的六篇 ICML 2020【域自适应】相关论文
专知会员服务
46+阅读 · 2020年9月29日
近期必读的六篇 ICML 2020【因果推理】相关论文
专知会员服务
87+阅读 · 2020年9月8日
近期必读的五篇KDD 2020【图神经网络 (GNN) 】相关论文_Part2
专知会员服务
160+阅读 · 2020年6月30日
Arxiv
0+阅读 · 2020年12月14日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
27+阅读 · 2020年6月19日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年12月1日
近期必读的六篇 NeurIPS 2020【因果推理】相关论文和代码
专知会员服务
71+阅读 · 2020年10月31日
近期必读的六篇 ICML 2020【域自适应】相关论文
专知会员服务
46+阅读 · 2020年9月29日
近期必读的六篇 ICML 2020【因果推理】相关论文
专知会员服务
87+阅读 · 2020年9月8日
近期必读的五篇KDD 2020【图神经网络 (GNN) 】相关论文_Part2
专知会员服务
160+阅读 · 2020年6月30日
微信扫码咨询专知VIP会员