Convex model predictive controls (MPCs) with a single rigid body model have demonstrated strong performance on real legged robots. However, convex MPCs are limited by their assumptions such as small rotation angle and pre-defined gait, limiting the richness of potential solutions. We remove those assumptions and solve the complete mixed-integer non-convex programming with single rigid body model. We first collect datasets of pre-solved problems offline, then learn the problem-solution map to solve this optimization fast for MPC. If warm-starts can be found, offline problems can be solved close to the global optimality. The proposed controller is tested by generating various gaits and behaviors depending on the initial conditions. Hardware test demonstrates online gait generation and adaptation running at more than 50 Hz based on sensor feedback.
翻译:组合模型预测控制器(MPCs)与单一的僵硬体模型相比,在真正的脚脚机器人上表现出很强的性能。然而,组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式预测控制器(MPCs)受到小型旋转角度和预先定义的步态等假设的限制,从而限制了潜在解决方案的丰富性。我们删除了这些假设并用单一的僵硬体模型解决了完整的混合整项混合整节式组合式组合式非组合式组合式组合式程序。我们首先收集了离线前解决问题的数据集,然后学习了快速为组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合组合组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合组合组合组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合式组合