Information retrieval (IR) evaluation measures are cornerstones for determining the suitability and task performance efficiency of retrieval systems. Their metric and scale properties enable to compare one system against another to establish differences or similarities. Based on the representational theory of measurement, this paper determines these properties by exploiting the information contained in a retrieval measure itself. It establishes the intrinsic framework of a retrieval measure, which is the common scenario when the domain set is not explicitly specified. A method to determine the metric and scale properties of any retrieval measure is provided, requiring knowledge of only some of its attained values. The method establishes three main categories of retrieval measures according to their intrinsic properties. Some common user-oriented and system-oriented evaluation measures are classified according to the presented taxonomy.


翻译:摘要:信息检索(IR)评估指标是确定检索系统适用性和任务性能效率的基石。它们的度量和比例属性可以让我们比较一个系统与另一个系统,从而确定差异或相似性。基于测量的表征理论,本文通过利用检索指标本身含有的信息,确定了这些属性。本文建立了检索指标的内在框架,即当域集没有明确指定时,检索指标的公共情形。提供了一种方法来确定任何检索指标的度量和比例属性,只需要知道它的一些达到值。该方法将检索指标根据其内在属性分为三个主要类别, 并根据提供的分类方法,将一些常见的面向用户和面向系统的评估指标进行了分类。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
【ICDM2022教程】多目标优化与推荐,173页ppt
专知会员服务
44+阅读 · 2022年12月24日
专知会员服务
23+阅读 · 2021年8月27日
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
论文浅尝 | 推荐系统的可解释性浅谈
开放知识图谱
15+阅读 · 2018年11月27日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
论文笔记 | How NOT To Evaluate Your Dialogue System
科技创新与创业
13+阅读 · 2017年12月23日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年11月27日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员