The core of information retrieval (IR) is to identify relevant information from large-scale resources and return it as a ranked list to respond to user's information need. Recently, the resurgence of deep learning has greatly advanced this field and leads to a hot topic named NeuIR (i.e., neural information retrieval), especially the paradigm of pre-training methods (PTMs). Owing to sophisticated pre-training objectives and huge model size, pre-trained models can learn universal language representations from massive textual data, which are beneficial to the ranking task of IR. Since there have been a large number of works dedicating to the application of PTMs in IR, we believe it is the right time to summarize the current status, learn from existing methods, and gain some insights for future development. In this survey, we present an overview of PTMs applied in different components of IR system, including the retrieval component, the re-ranking component, and other components. In addition, we also introduce PTMs specifically designed for IR, and summarize available datasets as well as benchmark leaderboards. Moreover, we discuss some open challenges and envision some promising directions, with the hope of inspiring more works on these topics for future research.


翻译:信息检索的核心是,从大规模资源中找出相关信息,并将这些信息作为应对用户信息需要的排名清单予以归还。最近,深层学习的重新抬头大大推进了这个领域,并导致一个名为NeuIR(神经信息检索)的热题(即神经信息检索),特别是培训前方法范式(PTMs),由于培训前目标复杂,模型规模庞大,经过培训的模型可以从大量文本数据中学习通用语言表述,这有益于IR的排名任务。由于有大量专门致力于在IR应用PTM的作品,我们认为现在正是总结现状、学习现有方法并为未来发展获得一些深刻见解的适当时机。在这次调查中,我们概述了IR系统不同组成部分应用的PTM,包括检索部分、重新排序部分和其他组成部分。此外,我们还介绍了专门为IR公司设计的PTM,并概述了现有的数据集以及基准版。此外,我们讨论了一些公开的挑战,并设想了一些有希望的未来研究主题。

16
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
33+阅读 · 2020年11月25日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | NAACL-HLT 2019等国际会议信息6条
Call4Papers
4+阅读 · 2018年10月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
12+阅读 · 2020年6月20日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2020年11月25日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | NAACL-HLT 2019等国际会议信息6条
Call4Papers
4+阅读 · 2018年10月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
相关论文
Arxiv
20+阅读 · 2021年9月21日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
12+阅读 · 2020年6月20日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Top
微信扫码咨询专知VIP会员