推荐系统已广泛应用于多个领域和应用。传统的推荐系统通常处理单一目标,如最小化预测误差或最大化推荐列表的排名。多目标优化是一个新兴的需求,以便推荐模型的开发可以考虑多个目标。 目前,多目标优化方法已经得到了很好的发展,并在推荐系统领域得到了重用。本教程旨在全面介绍多目标优化和多目标推荐系统。更具体地说,我们确定了多目标推荐系统可能有用的情况,总结了这些系统中的方法和评估方法,通过批判性分析指出了存在的问题,并为在推荐系统中使用多目标优化提供了指导方针。 https://moorecsys.github.io/ICDM2022/#slides-section

Part 1: Multi-Objective Optimization (MOO)

Background and History * Multi Objective Optimization (MOO) * MOO Solutions * Selection of the best solution in Pareto set * MOO libraries * Summary & QA

Part 2: Recommender Systems with MOO by Dr. Yong Zheng

Intro to RecSys * Why MOO in RecSys * RecSys with MOO (1): Recommendation Task as a MOO Process * RecSys with MOO (2): Enhanced RecSys with Dominance Relations * Summary, Guideline, Challenges & QA

成为VIP会员查看完整内容
45

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
【WWW2022教程】自动机器学习推荐系统:基础与进展
专知会员服务
38+阅读 · 2022年4月23日
专知会员服务
27+阅读 · 2021年7月20日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
LinkedIn《贝叶斯优化推荐系统》,IJCAI报告,142页ppt
专知会员服务
51+阅读 · 2021年1月11日
【RecSys2020干货教程】对抗机器学习推荐系统,186页ppt
专知会员服务
52+阅读 · 2020年10月10日
专知会员服务
87+阅读 · 2020年1月20日
RecSys2022 | 多阶段推荐系统的神经重排序教程
机器学习与推荐算法
0+阅读 · 2022年10月12日
WWW2022 | 基于因果的推荐算法教程
机器学习与推荐算法
3+阅读 · 2022年5月26日
WWW2022@教程 | 自动机器学习推荐系统: 基础与进展
机器学习与推荐算法
0+阅读 · 2022年4月26日
精选两篇最新AutoML推荐系统综述
机器学习与推荐算法
5+阅读 · 2022年4月7日
IJCAI2021 | 深度推荐系统教程 (附Slides)
机器学习与推荐算法
1+阅读 · 2021年8月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月21日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
92+阅读 · 2020年2月28日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
【WWW2022教程】自动机器学习推荐系统:基础与进展
专知会员服务
38+阅读 · 2022年4月23日
专知会员服务
27+阅读 · 2021年7月20日
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
LinkedIn《贝叶斯优化推荐系统》,IJCAI报告,142页ppt
专知会员服务
51+阅读 · 2021年1月11日
【RecSys2020干货教程】对抗机器学习推荐系统,186页ppt
专知会员服务
52+阅读 · 2020年10月10日
专知会员服务
87+阅读 · 2020年1月20日
相关资讯
RecSys2022 | 多阶段推荐系统的神经重排序教程
机器学习与推荐算法
0+阅读 · 2022年10月12日
WWW2022 | 基于因果的推荐算法教程
机器学习与推荐算法
3+阅读 · 2022年5月26日
WWW2022@教程 | 自动机器学习推荐系统: 基础与进展
机器学习与推荐算法
0+阅读 · 2022年4月26日
精选两篇最新AutoML推荐系统综述
机器学习与推荐算法
5+阅读 · 2022年4月7日
IJCAI2021 | 深度推荐系统教程 (附Slides)
机器学习与推荐算法
1+阅读 · 2021年8月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员