List-mode positron emission tomography (PET) image reconstruction is an important tool for PET scanners with many lines-of-response (LORs) and additional information such as time-of-flight and depth-of-interaction. Deep learning is one possible solution to enhance the quality of PET image reconstruction. However, the application of deep learning techniques to list-mode PET image reconstruction have not been progressed because list data is a sequence of bit codes and unsuitable for processing by convolutional neural networks (CNN). In this study, we propose a novel list-mode PET image reconstruction method using an unsupervised CNN called deep image prior (DIP) and a framework of alternating direction method of multipliers. The proposed list-mode DIP reconstruction (LM-DIPRecon) method alternatively iterates regularized list-mode dynamic row action maximum likelihood algorithm (LM-DRAMA) and magnetic resonance imaging conditioned DIP (MR-DIP). We evaluated LM-DIPRecon using both simulation and clinical data, and it achieved sharper images and better tradeoff curves between contrast and noise than the LM-DRAMA and MR-DIP. These results indicated that the LM-DIPRecon is useful for quantitative PET imaging with limited events. In addition, as list data has finer temporal information than dynamic sinograms, list-mode deep image prior reconstruction is expected to be useful for 4D PET imaging and motion correction.
翻译:列表- 中正离子排放断层图像重建是多条反应线(LORs)的PET扫描仪和更多资料(如飞行时间和深度互动)的一个重要工具。深层次学习是提高PET图像重建质量的可能解决办法之一。然而,由于列表数据是位码序列,不适合由神经神经网络处理,因此没有在列表中应用深学习技术以列出模式 PET图像重建图象。在本研究中,我们提出了一个新的列表- 模版 PET图像重建方法,使用不受监督的CNN称为深线反应线(LORs) 之前的深层图像(DIP) 和一个交替方向乘数法框架。提议的列表- 模版 DIP 重建(LM- DIcon) 方法, 替代将常规列表- 模式动态行动作最大可能性算法(LM- DRAMA) 和磁感光成像 DIP (M-PR- DIP) 条件下的D 。我们使用模拟和临床数据,对LM- DRA 之前的精确图像和定量列表结果比L- DRM 显示的数值比L- DRMMM 的精确 比较,这些预测算是比数字的预测成的。