Object detection in aerial images is a fundamental research task in the domain of geoscience and remote sensing. However, the advanced progress on this topic mainly focuses on designing progressive backbone architectures or head networks but ignores the neck network. In this letter, we first analyze the importance of the neck network in object detection from the perspective of information bottleneck. Then, to alleviate the information deficiency problem in the current neck networks, we propose a Global Semantic Network (GSNet), which acts as a bridge from the backbone to the head network in a bidirectional global pattern. Compared to the existing neck networks, our model can capture rich and detailed image features with less computational costs. Besides, we further propose a feature Fusion Refinement Module (FRM) for different levels of feature maps, which are suffering from a big information gap. To demonstrate the effectiveness and efficiency of our approach, experiments are carried out on two challenging datasets (i.e., DOTA and HRSC2016). Experimental results in terms of recognition accuracy and computational complexity validate the superiority of our method. The code has been open-sourced at GSNet.
翻译:航空图像中的物体探测是地球科学和遥感领域的一项基本研究任务,然而,这一专题的先进进展主要侧重于设计进步的骨干结构或主网络,但忽略了颈部网络。在本信,我们首先从信息瓶颈的角度分析颈部网络在物体探测中的重要性。然后,为了减轻当前颈部网络的信息不足问题,我们提议建立一个全球语义网络(GSNet),作为从骨干到主网络的双向双向全球模式的桥梁。与现有的颈部网络相比,我们的模型可以以较低的计算成本捕获丰富和详细的图像特征。此外,我们进一步提议为不同级别的地貌地图建立一个特征集成精细模块(FRM),这些特征图存在巨大的信息差距。为了证明我们的方法的有效性和效率,我们先在两个具有挑战性的数据集(即DOTA和HRSC2016)上进行了实验。在识别准确性和计算复杂性方面,实验结果证实了我们方法的优越性。该代码已在GSNet上公开提供。