Neural image compression methods have seen increasingly strong performance in recent years. However, they suffer orders of magnitude higher computational complexity compared to traditional codecs, which stands in the way of real-world deployment. This paper takes a step forward in closing this gap in decoding complexity by adopting shallow or even linear decoding transforms. To compensate for the resulting drop in compression performance, we exploit the often asymmetrical computation budget between encoding and decoding, by adopting more powerful encoder networks and iterative encoding. We theoretically formalize the intuition behind, and our experimental results establish a new frontier in the trade-off between rate-distortion and decoding complexity for neural image compression. Specifically, we achieve rate-distortion performance competitive with the established mean-scale hyperprior architecture of Minnen et al. (2018), while reducing the overall decoding complexity by 80 %, or over 90 % for the synthesis transform alone. Our code can be found at https://github.com/mandt-lab/shallow-ntc.


翻译:---- 神经图像压缩方法近年来取得了越来越强大的性能。但是和传统编解码器相比,它们的计算复杂度高出几个数量级,这阻碍了它们在实际应用中的推广。本文通过采用浅层或线性解码变换来缩小解码复杂度与传统编解码器之间的差距。为了弥补压缩性能的损失,我们利用编码和解码之间常常不对称的计算预算,采用更强大的编码网络和迭代编码。我们理论上阐述了背后的直觉,实验结果创造了神经图像压缩率失真与解码复杂度权衡的新领域。具体地,我们实现了与Minnen等人(2018年)建立的均值-缩放超先验结构相竞争的压缩率失真性能,同时将总体解码复杂度降低了80%,或仅考虑合成变换时降低了90%以上。我们的代码可以在https://github.com/mandt-lab/shallow-ntc上找到。

0
下载
关闭预览

相关内容

神经网络数学基础,45页ppt
专知会员服务
82+阅读 · 2023年5月7日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
43+阅读 · 2022年2月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
13+阅读 · 2022年10月20日
VIP会员
相关VIP内容
神经网络数学基础,45页ppt
专知会员服务
82+阅读 · 2023年5月7日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
43+阅读 · 2022年2月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员