We explore different curriculum learning methods for training convolutional neural networks on the task of deformable pairwise 3D medical image registration. To the best of our knowledge, we are the first to attempt to improve performance by training medical image registration models using curriculum learning, starting from an easy training setup in the first training stages, and gradually increasing the complexity of the setup. On the one hand, we consider two existing curriculum learning approaches, namely curriculum dropout and curriculum by smoothing. On the other hand, we propose a novel and simple strategy to achieve curriculum, namely to use purposely blurred images at the beginning, then gradually transit to sharper images in the later training stages. Our experiments with an underlying state-of-the-art deep learning model show that curriculum learning can lead to superior results compared to conventional training. Additionally, we show that curriculum by input blur has the best accuracy versus speed trade-off among the compared curriculum learning approaches.


翻译:我们探索了不同的课程学习方法,用于培训关于变形对称3D医学图像登记任务的革命神经网络。据我们所知,我们首先试图通过利用课程学习培训医学图像登记模型,从最初培训阶段的简易培训开始,逐步增加设置的复杂性,从而改进绩效。一方面,我们考虑两种现有的课程学习方法,即课程辍学和课程平滑。另一方面,我们提出了实现课程设置的新颖而简单的战略,即在开始阶段故意使用模糊的图像,然后在后期培训阶段逐步转换为更清晰的图像。我们用一个最先进的深层次学习模型进行的实验显示,课程学习与常规培训相比,能够带来优异的结果。此外,我们表明,通过投入而模糊,在比较的课程学习方法中,课程的准确性和速度取巧。

0
下载
关闭预览

相关内容

首篇「课程学习(Curriculum Learning)」2021综述论文
专知会员服务
49+阅读 · 2021年1月31日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
115+阅读 · 2019年12月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员