This work tackles the problem of semi-supervised learning of image classifiers. Our main insight is that the field of semi-supervised learning can benefit from the quickly advancing field of self-supervised visual representation learning. Unifying these two approaches, we propose the framework of self-supervised semi-supervised learning ($S^4L$) and use it to derive two novel semi-supervised image classification methods. We demonstrate the effectiveness of these methods in comparison to both carefully tuned baselines, and existing semi-supervised learning methods. We then show that $S^4L$ and existing semi-supervised methods can be jointly trained, yielding a new state-of-the-art result on semi-supervised ILSVRC-2012 with 10% of labels.
翻译:这项工作解决了半监督图像分类学的问题。 我们的主要见解是,半监督学习领域能够从自我监督的视觉表现学习的快速推进领域中受益。 统一这两种方法,我们提出自监督的半监督学习框架(S ⁇ 4L$),并用它来得出两种新的半监督图像分类方法。 我们展示了这些方法与仔细调整的基线和现有的半监督学习方法相比的有效性。 然后,我们展示了$S ⁇ 4L$和现有的半监督方法可以联合培训,在半监督的 ILSVRC-2012上产生新的最新结果,加上10%的标签。