We propose a novel locally adaptive learning estimator for enhancing the inter- and intra- discriminative capabilities of Deep Neural Networks, which can be used as improved loss layer for semantic image segmentation tasks. Most loss layers compute pixel-wise cost between feature maps and ground truths, ignoring spatial layouts and interactions between neighboring pixels with same object category, and thus networks cannot be effectively sensitive to intra-class connections. Stride by stride, our method firstly conducts adaptive pooling filter operating over predicted feature maps, aiming to merge predicted distributions over a small group of neighboring pixels with same category, and then it computes cost between the merged distribution vector and their category label. Such design can make groups of neighboring predictions from same category involved into estimations on predicting correctness with respect to their category, and hence train networks to be more sensitive to regional connections between adjacent pixels based on their categories. In the experiments on Pascal VOC 2012 segmentation datasets, the consistently improved results show that our proposed approach achieves better segmentation masks against previous counterparts.


翻译:我们提出一个新的本地适应性学习估计器,用于加强深神经网络的相互之间和内部的差别能力,用于改进语义图像分割任务的损失层。大多数损失层计算地貌地图和地面真理之间的像素成本,忽略空间布局和同一对象类别的相邻像素之间的相互作用,因此网络无法对同类连接产生有效敏感。我们的方法是先用斜坡脚进行适应性集合过滤,在预测的地貌图上操作适应性集合过滤器,目的是将预测的分布合并在与同一类别相邻的一小组像素上,然后计算合并的分布矢量和分类标签之间的成本。这种设计可以使同类相邻的预测组群纳入预测其类别正确性的估计,从而培训网络对相邻像素之间基于其类别的区域连接性更加敏感。在Pascal VOC 2012分解数据集的实验中,不断改进的结果显示,我们拟议的方法能够针对先前的对应方实现更好的分解面面罩。

5
下载
关闭预览

相关内容

自适应学习,也被称为自适应教学,是使用计算机算法来协调与学习者的互动,并提供定制学习资源和学习活动来解决每个学习者的独特需求的教育方法。在专业的学习情境,个人可以“试验出”一些训练方式,以确保教学内容的更新。根据学生的学习需要,计算机生成适应其特点的教育材料,包括他们对问题的回答和完成的任务和经验。该技术涵盖了各个研究领域和它们的衍生,包括计算机科学、人工智能、心理测验、教育学、心理学和脑科学。
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
专知会员服务
117+阅读 · 2019年12月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【Keras】基于SegNet和U-Net的遥感图像语义分割
数据挖掘入门与实战
3+阅读 · 2018年4月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
VIP会员
相关VIP内容
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
专知会员服务
117+阅读 · 2019年12月24日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【Keras】基于SegNet和U-Net的遥感图像语义分割
数据挖掘入门与实战
3+阅读 · 2018年4月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Top
微信扫码咨询专知VIP会员