To avoid poor empirical performance in Metropolis-Hastings and other accept-reject-based algorithms practitioners often tune them by trial and error. Lower bounds on the convergence rate are developed in both total variation and Wasserstein distances in order to identify how the simulations will fail so these settings can be avoided, providing guidance on tuning. Particular attention is paid to using the lower bounds to study the convergence complexity of accept-reject-based Markov chains and to constrain the rate of convergence for geometrically ergodic Markov chains. The theory is applied in several settings. For example, if the target density concentrates with a parameter $n$ (e.g. posterior concentration, Laplace approximations), it is demonstrated that the convergence rate of a Metropolis-Hastings chain can tend to $1$ exponentially fast if the tuning parameters do not depend carefully on $n$. This is demonstrated with Bayesian logistic regression with Zellner's g-prior when the dimension and sample increase in such a way that size $d/n \to \gamma \in (0, 1)$ and flat prior Bayesian logistic regression as $n \to \infty$.
翻译:为避免大都会-哈斯廷和其他以接受-接受-接受为基础的算法从业者的经验性表现不佳,通常会通过试验和错误来调试它们。在总变差和瓦塞斯坦距离方面,都制定了趋同率的较低界限,以确定模拟如何失败,从而可以避免这些设置,为调试提供指导。特别注意使用较低界限来研究以接受-拒绝为基础的Markov链的趋同复杂性,并限制几何性的ergodic Markov 链的趋同率。该理论适用于若干环境。例如,如果目标密度浓缩参数为$(例如后端浓度、拉普尔近似值),则显示,如果调准参数不小心依赖美元,则Metopolis-Hasting链的趋同率会迅速达到1美元。这一点与Bayesian的后勤倒退有关,Zellner的g-prior值在尺寸和样本增加时,其规模将达到美元/n\gamma\ n=美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元