This paper studies model checking for general parametric regression models with no dimension reduction structures on the high-dimensional vector of predictors. Using existing test as an initial test, this paper combines the sample-splitting technique and conditional studentization approach to construct a COnditionally Studentized Test(COST). Unlike existing tests, whether the initial test is global or local smoothing-based, and whether the dimension of the predictor vector and the number of parameters are fixed, or diverge at a certain rate as the sample size goes to infinity, the proposed test always has a normal weak limit under the null hypothesis. Further, the test can detect the local alternatives distinct from the null hypothesis at the fastest possible rate of convergence in hypothesis testing. We also discuss the optimal sample splitting in power performance. The numerical studies offer information on its merits and limitations in finite sample cases. As a generic methodology, it could be applied to other testing problems.
翻译:本文研究了对没有高维预测因子的参数回归模型的模型检验。利用现有的测试作为初始测试,本文结合样本分离技术和条件学生化方法构造了一种条件化学生化检验(COST)。与现有的测试不同,无论初始测试是全局的还是基于本地平滑的,预测变量的维数和参数数量是否固定,还是随着样本量的增加而发散,所提出的测试在零假设下总是具有正常的弱极限。此外,该检验可以以假设检验的最快可能收敛速度检测与零假设不同的本地替代方案。我们还讨论了功率效果中的最佳样本分割。数值研究提供了它在有限样本情况下的优缺点。作为一种通用方法,它可以应用于其他测试问题。