In this paper, we will show the $L^p$-resolvent estimate for the finite element approximation of the Stokes operator for $p \in \left( \frac{2N}{N+2}, \frac{2N}{N-2} \right)$, where $N \ge 2$ is the dimension of the domain. It is expected that this estimate can be applied to error estimates for finite element approximation of the non-stationary Navier--Stokes equations, since studies in this direction are successful in numerical analysis of nonlinear parabolic equations. To derive the resolvent estimate, we introduce the solution of the Stokes resolvent problem with a discrete external force. We then obtain local energy error estimate according to a novel localization technique and establish global $L^p$-type error estimates. The restriction for $p$ is caused by the treatment of lower-order terms appearing in the local energy error estimate. Our result may be a breakthrough in the $L^p$-theory of finite element methods for the non-stationary Navier--Stokes equations.
翻译:在本文中,我们将展示$ p \in \left( \frac{2N}{N+2}, \frac{2N}{N-2} \right)$的有限元逼近斯托克斯算子的$ L^p $-解析估计,其中$N$是定义域的维度,$N \geq 2$。预计这个估计可以应用于有限元逼近非定常Navier-Stokes方程的误差估计,因为在非线性抛物型方程数值分析研究中,沿这个方向的研究是成功的。要得到解析估计,我们介绍了具有离散外力的斯托克斯解析问题的解决方案。然后根据一种新的局部化技术获得局部随机误差估计,并建立全局$ L^p $类型的误差估计。$ p $的限制是由于局部能量误差估计中出现的低阶项的处理。我们的结果可能是非定常Navier-Stokes方程有限元方法$L^p$理论上的突破。