This work outlines a fast, high-precision time-domain solver for scalar, electromagnetic and gravitational perturbations on hyperboloidal foliations of Kerr space-times. Time-domain Teukolsky equation solvers have typically used explicit methods, which numerically violate Noether symmetries and are Courant-limited. These restrictions can limit the performance of explicit schemes when simulating long-time extreme mass ratio inspirals, expected to appear in LISA band for 2-5 years. We thus explore symmetric (exponential, Pad\'e or Hermite) integrators, which are unconditionally stable and known to preserve certain Noether symmetries and phase-space volume. For linear hyperbolic equations, these implicit integrators can be cast in explicit form, making them well-suited for long-time evolution of black hole perturbations. The 1+1 modal Teukolsky equation is discretized in space using polynomial collocation methods and reduced to a linear system of ordinary differential equations, coupled via mode-coupling arrays and discretized (matrix) differential operators. We use a matricization technique to cast the mode-coupled system in a form amenable to a method-of-lines framework, which simplifies numerical implementation and enables efficient parallelization on CPU and GPU architectures. We test our numerical code by studying late-time tails of Kerr spacetime perturbations in the sub-extremal and extremal cases.


翻译:这项工作勾勒出一个快速、 高精度、 高精度、 时间域域的解析器, 用于 Kerr 空间时间 的双倍折叠式的刻度、 电磁和重力扰动。 时间- 日文 Teukolsky 方程式的解析器通常使用清晰的方法, 这些方法在数字上违反了Nother 的对称性, 并且是Curant- 限制的。 这些限制可以限制当模拟长期极端质量比率在螺旋内, 预计将在 LISA 带中出现2-5 年时, 清晰方案的效果。 因此, 我们探索了对调度( 超精度、 帕德或赫米特) 的对调度( 超度、 Pad\'e 或 Hermite) 的对调和调和器的对调( 我们的对调序式) 的对调和对调制的系统进行分解的分解式 。</s>

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员