This work outlines a fast, high-precision time-domain solver for scalar, electromagnetic and gravitational perturbations on hyperboloidal foliations of Kerr space-times. Time-domain Teukolsky equation solvers have typically used explicit methods, which numerically violate Noether symmetries and are Courant-limited. These restrictions can limit the performance of explicit schemes when simulating long-time extreme mass ratio inspirals, expected to appear in LISA band for 2-5 years. We thus explore symmetric (exponential, Pad\'e or Hermite) integrators, which are unconditionally stable and known to preserve certain Noether symmetries and phase-space volume. For linear hyperbolic equations, these implicit integrators can be cast in explicit form, making them well-suited for long-time evolution of black hole perturbations. The 1+1 modal Teukolsky equation is discretized in space using polynomial collocation methods and reduced to a linear system of ordinary differential equations, coupled via mode-coupling arrays and discretized (matrix) differential operators. We use a matricization technique to cast the mode-coupled system in a form amenable to a method-of-lines framework, which simplifies numerical implementation and enables efficient parallelization on CPU and GPU architectures. We test our numerical code by studying late-time tails of Kerr spacetime perturbations in the sub-extremal and extremal cases.
翻译:这项工作勾勒出一个快速、 高精度、 高精度、 时间域域的解析器, 用于 Kerr 空间时间 的双倍折叠式的刻度、 电磁和重力扰动。 时间- 日文 Teukolsky 方程式的解析器通常使用清晰的方法, 这些方法在数字上违反了Nother 的对称性, 并且是Curant- 限制的。 这些限制可以限制当模拟长期极端质量比率在螺旋内, 预计将在 LISA 带中出现2-5 年时, 清晰方案的效果。 因此, 我们探索了对调度( 超精度、 帕德或赫米特) 的对调度( 超度、 Pad\'e 或 Hermite) 的对调和调和器的对调( 我们的对调序式) 的对调和对调制的系统进行分解的分解式 。</s>