We present and analyze a high-order discontinuous Galerkin method for the space discretization of the wave propagation model in thermo-poroelastic media. The proposed scheme supports general polytopal grids. Stability analysis and $hp$-version error estimates in suitable energy norms are derived for the semi-discrete problem. The fully-discrete scheme is then obtained based on employing an implicit Newmark-$\beta$ time integration scheme. A wide set of numerical simulations is reported, both for the verification of the theoretical estimates and for examples of physical interest. A comparison with the results of the poroelastic model is provided too, highlighting the differences between the predictive capabilities of the two models.
翻译:本文提出和分析了一种高阶不连续Galerkin方法,用于热-多孔弹性介质中波传播模型的空间离散化。提出的方案支持一般的多面体网格。对于半离散问题,导出了稳定性分析和适合能量范数的$hp$版本误差估计。然后,基于采用一个隐式Newmark-$\beta$时间积分方案得到完全离散化的方案。报告了广泛的数值模拟,既用于验证理论估计,又用于具有物理意义的示例。还提供了与多孔弹性模型结果的比较,突出了两种模型的预测能力之间的差异。