Following the breakthrough work of Tardos in the bit-complexity model, Vavasis and Ye gave the first exact algorithm for linear programming in the real model of computation with running time depending only on the constraint matrix. For solving a linear program (LP) $\max\, c^\top x,\: Ax = b,\: x \geq 0,\: A \in \mathbb{R}^{m \times n}$, Vavasis and Ye developed a primal-dual interior point method using a 'layered least squares' (LLS) step, and showed that $O(n^{3.5} \log (\bar{\chi}_A+n))$ iterations suffice to solve (LP) exactly, where $\bar{\chi}_A$ is a condition measure controlling the size of solutions to linear systems related to $A$. Monteiro and Tsuchiya, noting that the central path is invariant under rescalings of the columns of $A$ and $c$, asked whether there exists an LP algorithm depending instead on the measure $\bar{\chi}^*_A$, defined as the minimum $\bar{\chi}_{AD}$ value achievable by a column rescaling $AD$ of $A$, and gave strong evidence that this should be the case. We resolve this open question affirmatively. Our first main contribution is an $O(m^2 n^2 + n^3)$ time algorithm which works on the linear matroid of $A$ to compute a nearly optimal diagonal rescaling $D$ satisfying $\bar{\chi}_{AD} \leq n(\bar{\chi}^*)^3$. This algorithm also allows us to approximate the value of $\bar{\chi}_A$ up to a factor $n (\bar{\chi}^*)^2$. As our second main contribution, we develop a scaling invariant LLS algorithm, together with a refined potential function based analysis for LLS algorithms in general. With this analysis, we derive an improved $O(n^{2.5} \log n\log (\bar{\chi}^*_A+n))$ iteration bound for optimally solving (LP) using our algorithm. The same argument also yields a factor $n/\log n$ improvement on the iteration complexity bound of the original Vavasis-Ye algorithm.
翻译:塔多斯在 bit- complex 模型中的突破性工作之后, Vavasis 和 Ye 提供了在实际计算模型中直线程序使用成本的首次精确算法, 运行时间仅取决于限制矩阵。 对于解决一个线性程序( LP) $\ max\, c<unk> top x,\: x\ geq 0.,\: x x\ geqq 0.,\: a\ in mathbralb{R} $, Vavasis 和 Ye 开发了一个原始内部点方法, 使用“ 平坦最小的 平方 ” (LLS) 步骤, 并显示 $(n=3.5}\ log (bral) 美元, colorisal =xal ralal =xal 美元 。 $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</s>