Background: When using deep learning models, there are many possible vulnerabilities and some of the most worrying are the adversarial inputs, which can cause wrong decisions with minor perturbations. Therefore, it becomes necessary to retrain these models against adversarial inputs, as part of the software testing process addressing the vulnerability to these inputs. Furthermore, for an energy efficient testing and retraining, data scientists need support on which are the best guidance metrics and optimal dataset configurations. Aims: We examined four guidance metrics for retraining convolutional neural networks and three retraining configurations. Our goal is to improve the models against adversarial inputs regarding accuracy, resource utilization and time from the point of view of a data scientist in the context of image classification. Method: We conducted an empirical study in two datasets for image classification. We explore: (a) the accuracy, resource utilization and time of retraining convolutional neural networks by ordering new training set by four different guidance metrics (neuron coverage, likelihood-based surprise adequacy, distance-based surprise adequacy and random), (b) the accuracy and resource utilization of retraining convolutional neural networks with three different configurations (from scratch and augmented dataset, using weights and augmented dataset, and using weights and only adversarial inputs). Results: We reveal that retraining with adversarial inputs from original weights and by ordering with surprise adequacy metrics gives the best model w.r.t. the used metrics. Conclusions: Although more studies are necessary, we recommend data scientists to use the above configuration and metrics to deal with the vulnerability to adversarial inputs of deep learning models, as they can improve their models against adversarial inputs without using many inputs.


翻译:在使用深层学习模型时,存在许多可能的脆弱性,而一些最令人担忧的则是对抗性投入,这可能造成不正确的决定,造成轻微扰动。因此,有必要对这些模型进行重新培训,作为软件测试过程的一部分,处理这些投入的脆弱性。此外,为了进行节能测试和再培训,数据科学家需要支持,而这种支持是最佳指导度和最佳的数据集配置。目的:我们审查了用于再培训神经神经网络和三种深度再培训配置的四项指导性指标。我们的目标是在图像分类方面,从数据科学家的观点角度,改进关于准确性、资源利用和时间的对抗性投入方面的对抗性投入。方法:我们在两个数据集中进行了经验性研究,以解决这些投入的脆弱性。 我们探索:(a) 重新培训的准确性、资源利用和时间是革命性神经神经网络的最佳指导性指标,这四种不同的指导性指标(包括中量、基于可能性的突变现性预测性、基于远程的突变现性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断性判断

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月2日
Arxiv
38+阅读 · 2020年3月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员