We establish conditions under which Metropolis-Hastings (MH) algorithms with a position-dependent proposal covariance matrix will or will not have the geometric rate of convergence. Some of the diffusions based MH algorithms like the Metropolis adjusted Langevin algorithm (MALA) and the pre-conditioned MALA (PCMALA) have a position-independent proposal variance. Whereas, for other modern variants of MALA like the manifold MALA (MMALA) that adapt to the geometry of the target distributions, the proposal covariance matrix changes in every iteration. Thus, we provide conditions for geometric ergodicity of different variations of the Langevin algorithms. These results have important practical implications as these provide crucial justification for the use of asymptotically valid Monte Carlo standard errors for Markov chain based estimates. The general conditions are verified in the context of conditional simulation from the two most popular generalized linear mixed models (GLMMs), namely the binomial GLMM with the logit link and the Poisson GLMM with the log link. Empirical comparison in the framework of some spatial GLMMs shows that the computationally less expensive PCMALA with an appropriately chosen pre-conditioning matrix may outperform the MMALA.
翻译:我们为大都会-Hastings(MH)算法及其基于位置的建议的共变矩阵设定了一定条件,使某些基于扩散的MH算法,如大都会经调整的Langevin算法(MALA)和预设的MAMALA(PCMALA)等基于位置的MALA算法具有与位置独立的提议差异。而对于其他现代变方,如适应目标分布的几何的MARA(MALA)多重组合模型(MMALA),建议每个迭代的相异矩阵变化。因此,我们为朗埃文算法的不同变异的几何异性提供了条件。这些结果具有重要的实际意义,因为这些结果为在马尔科夫链的估算中使用无效力的蒙特卡洛标准错误提供了至关重要的理由。一般条件在两个最受欢迎的通用线性混合模型(GLMMM)的双调制GLMMMM(MM)和Poisson GLMMM(GLMMM)与所选的对地平面模型框架进行不那么高的模拟的模拟时,在GMALMMMMMMMMMMMM的模型上进行了适当的空间-MLMMMMM的比较。