We present finite-blocklength achievability bounds for the unsourced A-channel. In this multiple-access channel, users noiselessly transmit codewords picked from a common codebook with entries generated from a $q$-ary alphabet. At each channel use, the receiver observes the set of different transmitted symbols but not their multiplicity. We show that the A-channel finds applications in unsourced random-access (URA) and group testing. Leveraging the insights provided by the finite-blocklength bounds and the connection between URA and non-adaptive group testing through the A-channel, we propose improved decoding methods for state-of-the-art A-channel codes and we showcase how A-channel codes provide a new class of structured group testing matrices. The developed bounds allow to evaluate the achievable error probabilities of group testing matrices based on random A-channel codes for arbitrary numbers of tests, items and defectives. We show that such a construction asymptotically achieves the optimal number of tests. In addition, every efficiently decodable A-channel code can be used to construct a group testing matrix with sub-linear recovery time.
翻译:我们为无源A通道展示了有限区块长的可获取性界限。在这个多进入通道中,用户无噪音地传输从通用代码簿中提取的编码词,该编码词由美元字母生成的条目组成。在每种频道使用中,接收器观察不同的传输符号组,而不是其多重性。我们显示,A通道在无源随机访问(URA)和群体测试中发现应用程序。利用有限区块长度界限提供的洞察力以及通过A通道进行 URA 与非适应性群体测试之间的联系,我们建议改进A频道的状态代码解码方法,我们展示A频道代码如何提供新的结构化组群体测试矩阵类别。我们开发的界限允许根据随机A频道代码评估群体测试矩阵在任意数量、项目和缺陷方面的可实现的误差概率。我们显示,通过A通道测试系统进行的这种构造能够达到最佳的测试次数。此外,每个高效的回收A频道代码都能够用来构建一个分组的子测试。