The conditional moment problem is a powerful formulation for describing structural causal parameters in terms of observables, a prominent example being instrumental variable regression. A standard approach reduces the problem to a finite set of marginal moment conditions and applies the optimally weighted generalized method of moments (OWGMM), but this requires we know a finite set of identifying moments, can still be inefficient even if identifying, or can be theoretically efficient but practically unwieldy if we use a growing sieve of moment conditions. Motivated by a variational minimax reformulation of OWGMM, we define a very general class of estimators for the conditional moment problem, which we term the variational method of moments (VMM) and which naturally enables controlling infinitely-many moments. We provide a detailed theoretical analysis of multiple VMM estimators, including ones based on kernel methods and neural nets, and provide conditions under which these are consistent, asymptotically normal, and semiparametrically efficient in the full conditional moment model. We additionally provide algorithms for valid statistical inference based on the same kind of variational reformulations, both for kernel- and neural-net-based varieties. Finally, we demonstrate the strong performance of our proposed estimation and inference algorithms in a detailed series of synthetic experiments.
翻译:有条件的瞬间问题是用一个强有力的提法来描述可观测到的结构性因果参数,一个突出的例子是工具性可变回归。一个标准方法将问题降为一组有限的边际瞬间条件,并采用最优加权的瞬间普遍方法(OWGMMM),但这要求我们知道一套有限的识别时间,即使我们用不断增长的瞬间分辨法来识别,或者在理论上仍然效率很高,但实际上不易操作。我们受到对 OWGMMM 进行变式微缩重整的驱动,我们为有条件瞬间问题定义了一个非常笼统的估测者类别,我们用它来形容时间的变异方法(VMMM),这自然能够控制无限的时段。我们提供了对多个VMM的测算器的详细理论分析,包括以内核方法和神经网为基础的测点,并且提供条件,在完全有条件的瞬间模型中,这些是一贯的正常的,半对准效率。我们又根据同样的变异性重的重订方法提供了一种有效的统计推算法,即最终和基于我们实验室和合成试验系列中的详细演算。