Content-Based Image Retrieval (CIR) aims to search for a target image by concurrently comprehending the composition of an example image and a complementary text, which potentially impacts a wide variety of real-world applications, such as internet search and fashion retrieval. In this scenario, the input image serves as an intuitive context and background for the search, while the corresponding language expressly requests new traits on how specific characteristics of the query image should be modified in order to get the intended target image. This task is challenging since it necessitates learning and understanding the composite image-text representation by incorporating cross-granular semantic updates. In this paper, we tackle this task by a novel \underline{\textbf{B}}ottom-up cr\underline{\textbf{O}}ss-modal \underline{\textbf{S}}emantic compo\underline{\textbf{S}}ition (\textbf{BOSS}) with Hybrid Counterfactual Training framework, which sheds new light on the CIR task by studying it from two previously overlooked perspectives: \emph{implicitly bottom-up composition of visiolinguistic representation} and \emph{explicitly fine-grained correspondence of query-target construction}. On the one hand, we leverage the implicit interaction and composition of cross-modal embeddings from the bottom local characteristics to the top global semantics, preserving and transforming the visual representation conditioned on language semantics in several continuous steps for effective target image search. On the other hand, we devise a hybrid counterfactual training strategy that can reduce the model's ambiguity for similar queries.
翻译:以内容为基础的图像 Retreval (CIR) 的目的是通过同时理解示例图像和补充文本的构成来搜索目标图像, 从而同时理解一个示例图像和补充文本的构成, 这可能会影响一系列广泛的真实世界应用程序, 如互联网搜索和时装检索。 在此情况下, 输入图像可以作为搜索的直观背景和背景, 而相应的语言则明确要求对于如何修改查询图像的具体特性以获得预定目标图像进行新的特性。 这项任务具有挑战性, 因为它需要同时学习和理解复合图像文本的表达方式, 包括跨语系的语义更新。 在本文中, 我们通过一个新的直观的直观表达方式, 直观的直观表达方式可以减少一个直观的直观结构, 直观的直观的直观结构, 直观的直观的直观的直观结构, 以及我们从一个直观的直观的直观的直观的直观的直观的直径分析中, 直观的直观的直观的直观的直观的直观的直观的直观的直观分析。