图像检索(Image Retrieval)专知荟萃
入门学习
- 相似图片搜索的原理 阮一峰
- Google 图片搜索的原理是什么?
- 基于内容的图像检索技(CBIR)术相术介绍
- 图像检索:基于内容的图像检索技术
- 基于内容的图像检索技术
- 图像检索:CNN卷积神经网络与实战 CNN for Image Retrieval
- 用Python和OpenCV创建一个图片搜索引擎的完整指南
综述
- Recent Advance in Content-based Image Retrieval: A Literature Survey. Wengang Zhou, Houqiang Li, and Qi Tian 2017
- Intelligent Image Retrieval Techniques: A Survey 2014
- A survey on content based image retrieval. 2013
进阶文章
2011
- Using Very Deep Autoencoders for Content-Based Image Retrieval
2013
- Learning High-level Image Representation for Image Retrieval via Multi-Task DNN using Clickthrough Data
2014
- Neural Codes for Image Retrieval
- Efficient On-the-fly Category Retrieval using ConvNets and GPUs
2015
- Learning visual similarity for product design with convolutional neural networks SIGGRAPH 2015
- Exploiting Local Features from Deep Networks for Image Retrieval
- Cross-domain Image Retrieval with a Dual Attribute-aware Ranking Network
ICCV 2015
- Where to Buy It: Matching Street Clothing Photos in Online Shops ICCV 2015
- Aggregating Deep Convolutional Features for Image Retrieval
- Particular object retrieval with integral max-pooling of CNN activations
2016
- Deep Image Retrieval: Learning global representations for image search ECCV 2016
- Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks. CVPR 2016
- Fast Training of Triplet-based Deep Binary Embedding Networks. CVPR 2016
- Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles. CVPR 2016
- Bags of Local Convolutional Features for Scalable Instance Search. Best Poster Award at ICMR 2016.
- Group Invariant Deep Representations for Image Instance Retrieval
- Natural Language Object Retrieval
- Faster R-CNN Features for Instance Search
- Where to Focus: Query Adaptive Matching for Instance Retrieval Using Convolutional Feature Maps
- Adversarial Training For Sketch Retrieval
- DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations
- CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples
- PicHunt: Social Media Image Retrieval for Improved Law Enforcement
- The Sketchy Database: Learning to Retrieve Badly Drawn Bunnies
- End-to-end Learning of Deep Visual Representations for Image Retrieval
- What Is the Best Practice for CNNs Applied to Visual Instance Retrieval?
2017
- AMC: Attention guided Multi-modal Correlation Learning for Image Search. CVPR 2017
- Deep image representations using caption generators. ICME 2017
- One-Shot Fine-Grained Instance Retrieval. ACM MM 2017
- Selective Deep Convolutional Features for Image Retrieval. ACM MM 2017
- Deep Binaries: Encoding Semantic-Rich Cues for Efficient Textual-Visual Cross Retrieval. ICCV 2017
- Image2song: Song Retrieval via Bridging Image Content and Lyric Words. ICCV 2017
- SIFT Meets CNN: A Decade Survey of Instance Retrieval
- Image Retrieval with Deep Local Features and Attention-based Keypoints
Tutorial
- CVPR’16 Tutorial on Image Tag Assignment, Refinement and Retrieval
- Content-based image retrieval tutorial by Joani Mitro
- Tutorial on Image Retrieval System, (IRS)
视频教程
- Deep Image Retrieval: Learning global representations for image search
- Image Instance Retrieval: Overview of state-of-the-art
代码
- Neural Codes for Image Retrieval
- Natural Language Object Retrieval
- Bags of Local Convolutional Features for Scalable Instance Search
- Faster R-CNN Features for Instance Search
- CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples
- Class-Weighted Convolutional Features for Visual Instance Search
领域专家
- Hervé Jégou
- Andrew Zisserman
- Qi Tian
- Artem Babenko
Datasets
- Corel 1000 and 10,000 图像数据库
- The COREL Database for Content based Image Retrieval
- Corel-5K and Corel -10K Datasets该页面下面给出了图片的链接,可以用python写个脚本把它们爬下来。
- INSTRE,中科院计算所弄的一个数据库28543张图片,还有他们做的web检索系统ISIA。
- MIRFLICKR 1M数据库,100多g.
- Image Similarity Triplet Dataset
- INRIA Holidays 该数据集是Herve Jegou研究所经常度假时拍的图片(风景为主),一共1491张图,500张query(一张图一个group)和对应着991张相关图像,已提取了128维的SIFT点4455091个,visual dictionaries来自Flickr60K.
- Oxford Buildings Dataset,5k Dataset images,有5062张图片,是牛津大学VGG小组公布的,在基于词汇树做检索的论文里面,这个数据库出现的频率极高。
- Oxford Paris,The Paris Dataset,oxford的VGG组从Flickr搜集了6412张巴黎旅游图片,包括Eiffel Tower等。
- 201Books and CTurin180 The CTurin180 and 201Books Data Sets,2011.5,Telecom Italia提供于Compact Descriptors for Visual Search,该数据集包括:Nokia E7拍摄的201本书的封面图片(多视角拍摄,各6张),共1.3GB; Turin市180个建筑的视频图像,拍摄的camera有Galaxy S、iPhone 3、Canon A410、Canon S5 IS,共2.7GB
- Stanford Mobile Visual Search,Stanford Mobile Visual Search Dataset,2011.2,stanford提供,包括8种场景,如CD封面、油画等,每组相关图片都是采自不同相机(手机),所有场景共500张图;以后又发布了一个patch数据集,Compact Descriptors for Visual Search Patches Dataset,校对了相同patch。
- UKBench,UKBench database,2006.7,Henrik Stewénius在他CVPR06文章中提供的数据集,图像都为640x480,每个group有4张图,文件接近2GB,提供visual words。
初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,本文为专知内容组原创内容,未经允许不得转载,如需转载请发送邮件至fangquanyi@gmail.com 或 联系微信专知小助手(Rancho_Fang)
敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取第一手AI相关知识